Answer
Verified
396k+ views
Hint: The second law of motion provides us a method to estimate the force acting on an object as a product of the object's mass and the object's acceleration, which is the change in velocity concerning time. Force is the change of momentum rate. For a fixed mass, force is mass times acceleration.
Complete step-by-step solution:
We consider an object of mass $m$ having an initial velocity $u$; after traveling for $t$ time, it attains final velocity $v$.
Initial momentum, $p_{1} = mu$
Final momentum, $p_{2} = mu$
Change in momentum = $p_{2} - p_{1} = mv – mu$
Total time taken = t
There is an applied force $F$.
According to Newton’s second law of motion,
Applied Force is equal to the rate of change of momentum.
$F = \dfrac{p_{2} - p_{1} }{t}$
$\implies F = \dfrac{mv - mu }{t}$
$\implies F = \dfrac{m(v – u) }{t}$
Using first equation of motion,
$v = u + at$
We get, $a = \dfrac{v-u}{t}$
Therefore, we get,
$F = ma$
This is the relation between force applied and acceleration.
Momentum, $p = mv$
Where, m is the mass of the body.
v is the velocity of the body.
a) Momentum versus velocity, when mass is fixed.
$ p \propto v$
b) Momentum versus mass when velocity is constant.
$p \propto m$
Note:Unlike the first law of motion, Newton’s second law of motion concerns the behaviour of objects for which all fundamental forces are unbalanced. The second law is more quantitative and is utilized extensively to determine what happens in conditions involving a force.
Complete step-by-step solution:
We consider an object of mass $m$ having an initial velocity $u$; after traveling for $t$ time, it attains final velocity $v$.
Initial momentum, $p_{1} = mu$
Final momentum, $p_{2} = mu$
Change in momentum = $p_{2} - p_{1} = mv – mu$
Total time taken = t
There is an applied force $F$.
According to Newton’s second law of motion,
Applied Force is equal to the rate of change of momentum.
$F = \dfrac{p_{2} - p_{1} }{t}$
$\implies F = \dfrac{mv - mu }{t}$
$\implies F = \dfrac{m(v – u) }{t}$
Using first equation of motion,
$v = u + at$
We get, $a = \dfrac{v-u}{t}$
Therefore, we get,
$F = ma$
This is the relation between force applied and acceleration.
Momentum, $p = mv$
Where, m is the mass of the body.
v is the velocity of the body.
a) Momentum versus velocity, when mass is fixed.
$ p \propto v$
b) Momentum versus mass when velocity is constant.
$p \propto m$
Note:Unlike the first law of motion, Newton’s second law of motion concerns the behaviour of objects for which all fundamental forces are unbalanced. The second law is more quantitative and is utilized extensively to determine what happens in conditions involving a force.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE