
How to derive the Relativistic Energy-momentum relation.
Answer
525.9k+ views
Hint: We first define the Relativistic Energy-momentum relation in Physics, as the Relativistic-dispersion relation, which relates the total energy (also known as relativistic energy) to the rest mass of an object and its momentum. We will derive this equation with the help of some previously known equations, that are, total energy of a particle and the equation for relativistic momentum.
Complete step-by-step solution:
Let the total energy of the particle (not taking into consideration the potential energy of the particle) be E and the relativistic momentum of the particle be p. Then we can write:
$\Rightarrow E=K+m{{c}^{2}}$
Where,
$K$ is the kinetic energy of the particle. And,
$m{{c}^{2}}$ is the rest mass energy.
Also, this total energy E is written as:
$\Rightarrow E=\dfrac{m{{c}^{2}}}{\sqrt{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}}$ [Let this expression be equation number (1)]
And, the relativistic momentum is given by:
$\Rightarrow p=\dfrac{mv}{\sqrt{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}}$ [Let this expression be equation number (2)]
Now, we begin with squaring the energy equation, that is, number (1) as follows:
$\Rightarrow {{E}^{2}}=\dfrac{{{m}^{2}}{{c}^{4}}}{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}$
Inserting, ${{v}^{2}}-{{v}^{2}}$ as shown and simplifying, we get:
$\begin{align}
& \Rightarrow {{E}^{2}}=\dfrac{{{m}^{2}}{{c}^{2}}({{v}^{2}}-{{v}^{2}}+{{c}^{2}})}{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}} \\
& \Rightarrow {{E}^{2}}=\dfrac{{{m}^{2}}{{c}^{2}}{{v}^{2}}}{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}+\dfrac{{{m}^{2}}{{c}^{4}}-{{m}^{2}}{{c}^{2}}{{v}^{2}}}{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}} \\
\end{align}$
Using the relativistic momentum equation, that is equation number (2) in R.H.S., we get:
$\begin{align}
& \Rightarrow {{E}^{2}}={{p}^{2}}{{c}^{2}}+{{m}^{2}}{{c}^{2}}\dfrac{\left( {{c}^{2}}-{{v}^{2}} \right)}{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}} \\
& \Rightarrow {{E}^{2}}={{p}^{2}}{{c}^{2}}+{{m}^{2}}{{c}^{2}}\dfrac{\left( {{c}^{2}}-{{v}^{2}} \right)}{\dfrac{{{c}^{2}}-{{v}^{2}}}{{{c}^{2}}}} \\
& \Rightarrow {{E}^{2}}={{p}^{2}}{{c}^{2}}+{{m}^{2}}{{c}^{4}} \\
\end{align}$
Thus, the final equation of the Relativistic Energy-Momentum relation has been derived. And it is given by the following equation:
$\Rightarrow {{E}^{2}}={{p}^{2}}{{c}^{2}}+{{m}^{2}}{{c}^{4}}$
Note: Here, the term ${{m}^{2}}{{c}^{4}}$ is a constant and it is equal to, ${{E}^{2}}-{{p}^{2}}{{c}^{2}}$. This states that the difference between the squares and relativistic momentum will remain constant in all reference frames. It should also be noted that relativistic momentum and relativistic energy changes if we change the inertial reference frame but the mass of the particle remains constant.
Complete step-by-step solution:
Let the total energy of the particle (not taking into consideration the potential energy of the particle) be E and the relativistic momentum of the particle be p. Then we can write:
$\Rightarrow E=K+m{{c}^{2}}$
Where,
$K$ is the kinetic energy of the particle. And,
$m{{c}^{2}}$ is the rest mass energy.
Also, this total energy E is written as:
$\Rightarrow E=\dfrac{m{{c}^{2}}}{\sqrt{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}}$ [Let this expression be equation number (1)]
And, the relativistic momentum is given by:
$\Rightarrow p=\dfrac{mv}{\sqrt{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}}$ [Let this expression be equation number (2)]
Now, we begin with squaring the energy equation, that is, number (1) as follows:
$\Rightarrow {{E}^{2}}=\dfrac{{{m}^{2}}{{c}^{4}}}{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}$
Inserting, ${{v}^{2}}-{{v}^{2}}$ as shown and simplifying, we get:
$\begin{align}
& \Rightarrow {{E}^{2}}=\dfrac{{{m}^{2}}{{c}^{2}}({{v}^{2}}-{{v}^{2}}+{{c}^{2}})}{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}} \\
& \Rightarrow {{E}^{2}}=\dfrac{{{m}^{2}}{{c}^{2}}{{v}^{2}}}{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}+\dfrac{{{m}^{2}}{{c}^{4}}-{{m}^{2}}{{c}^{2}}{{v}^{2}}}{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}} \\
\end{align}$
Using the relativistic momentum equation, that is equation number (2) in R.H.S., we get:
$\begin{align}
& \Rightarrow {{E}^{2}}={{p}^{2}}{{c}^{2}}+{{m}^{2}}{{c}^{2}}\dfrac{\left( {{c}^{2}}-{{v}^{2}} \right)}{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}} \\
& \Rightarrow {{E}^{2}}={{p}^{2}}{{c}^{2}}+{{m}^{2}}{{c}^{2}}\dfrac{\left( {{c}^{2}}-{{v}^{2}} \right)}{\dfrac{{{c}^{2}}-{{v}^{2}}}{{{c}^{2}}}} \\
& \Rightarrow {{E}^{2}}={{p}^{2}}{{c}^{2}}+{{m}^{2}}{{c}^{4}} \\
\end{align}$
Thus, the final equation of the Relativistic Energy-Momentum relation has been derived. And it is given by the following equation:
$\Rightarrow {{E}^{2}}={{p}^{2}}{{c}^{2}}+{{m}^{2}}{{c}^{4}}$
Note: Here, the term ${{m}^{2}}{{c}^{4}}$ is a constant and it is equal to, ${{E}^{2}}-{{p}^{2}}{{c}^{2}}$. This states that the difference between the squares and relativistic momentum will remain constant in all reference frames. It should also be noted that relativistic momentum and relativistic energy changes if we change the inertial reference frame but the mass of the particle remains constant.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

