How do you determine if the two lines are parallel, perpendicular, or neither if line a passes through points \[\left( { - 1,4} \right)\] and \[\left( {2,6} \right)\] and line b passes through points \[\left( {2, - 3} \right)\] and \[\left( {8,1} \right)\] ?
Answer
Verified
442.8k+ views
Hint: In this question we need to find the relation between the lines formed by the two pairs of points. The two lines in the coordinate plane. If the slope of both the lines are equal, then the two lines are parallel to each other. If the product of the slope of both the lines is \[ - 1\] then, the two lines are perpendicular to each other.
The equation of the line between the two points is obtained as \[y - {y_1} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)\left( {x - {x_1}} \right)\].
Complete Step By Step solution:
We have given the pair of points are \[\left( { - 1,4} \right)\] and\[\left( {2,6} \right)\]. The other points are \[\left( {2, - 3} \right)\] and\[\left( {8,1} \right)\].
If \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] are the two pair of points, then the slope of these two points is of the form.
\[m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\]
Then, the slope of the line between the points \[\left( { - 1,4} \right)\] and\[\left( {2,6} \right)\]is calculated as,
\[
{m_1} = \dfrac{{6 - 4}}{{2 - \left( { - 1} \right)}} \\
= \dfrac{2}{3} \\
\]
Thus, the slope of the first line is \[{m_1} = \dfrac{2}{3}\] .
Then, the slope of the line between the points \[\left( {2, - 3} \right)\] and\[\left( {8,1} \right)\]is calculated as,
\[
{m_2} = \dfrac{{1 - \left( { - 3} \right)}}{{8 - 2}} \\
= \dfrac{4}{6} \\
= \dfrac{2}{3} \\
\]
The case when the slope of both the lines are equal \[{m_1} = {m_2} = \dfrac{2}{3}\] then the lines are parallel.
Note:
The slope of the line is defined as the rate of change of y coordinates of the lines with respect to the x coordinate of the line. If the slope is positive, then the slope is steeper and is in upward direction. The negative slope is the line that is running downward. The vertical lines have no slope.
The slope intercept form of the line is \[y = mx + c\], here m is the slope and c are the intercept of the line.
The equation of the line between the two points is obtained as \[y - {y_1} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)\left( {x - {x_1}} \right)\].
Complete Step By Step solution:
We have given the pair of points are \[\left( { - 1,4} \right)\] and\[\left( {2,6} \right)\]. The other points are \[\left( {2, - 3} \right)\] and\[\left( {8,1} \right)\].
If \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] are the two pair of points, then the slope of these two points is of the form.
\[m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\]
Then, the slope of the line between the points \[\left( { - 1,4} \right)\] and\[\left( {2,6} \right)\]is calculated as,
\[
{m_1} = \dfrac{{6 - 4}}{{2 - \left( { - 1} \right)}} \\
= \dfrac{2}{3} \\
\]
Thus, the slope of the first line is \[{m_1} = \dfrac{2}{3}\] .
Then, the slope of the line between the points \[\left( {2, - 3} \right)\] and\[\left( {8,1} \right)\]is calculated as,
\[
{m_2} = \dfrac{{1 - \left( { - 3} \right)}}{{8 - 2}} \\
= \dfrac{4}{6} \\
= \dfrac{2}{3} \\
\]
The case when the slope of both the lines are equal \[{m_1} = {m_2} = \dfrac{2}{3}\] then the lines are parallel.
Note:
The slope of the line is defined as the rate of change of y coordinates of the lines with respect to the x coordinate of the line. If the slope is positive, then the slope is steeper and is in upward direction. The negative slope is the line that is running downward. The vertical lines have no slope.
The slope intercept form of the line is \[y = mx + c\], here m is the slope and c are the intercept of the line.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE