Determine the domain and range of \[{{\cos }^{-1}}x\].
Answer
Verified
493.8k+ views
Hint: We will be using the concept of inverse trigonometric functions to solve the problem. We will be using the fact that the functions that have inverse are one – one and onto. Also, we will use the graph of \[{{\cos }^{-1}}x\] to better understand the solution.
Complete step-by-step answer:
Now, we have to find the domain and range of \[{{\cos }^{-1}}x\].
We know that a function that has an inverse has exactly one output for exactly one input. To keep inverse trigonometric functions consistent with this definition. We have to designate ranges for them that will take care of all the possible input values and don’t have any duplication.
Now, we have the graph of \[\cos x\] as,
Now, we can see that the function \[\cos x\] is many to one that is for many values of x the output is the same.
Now, we know that the domain of an inverse trigonometric function is the same as that of the range of its counter trigonometric function.
Now, we know that the range of \[\cos x\] is $\left[ -1,1 \right]$. Therefore, the domain of \[{{\cos }^{-1}}x\] is $\left[ -1,1 \right]$ for this the range of function \[{{\cos }^{-1}}x\] on graph is,
So, we have the range of \[{{\cos }^{-1}}x\] as $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$.
Note: To solve these types of questions it is important to note that we have used a fact that the range of a function is equal to the domain of its inverse. Also the domain of function is equal to the range of its inverse. Also, the inverse of a function exists, if the function is one – one and onto.
Complete step-by-step answer:
Now, we have to find the domain and range of \[{{\cos }^{-1}}x\].
We know that a function that has an inverse has exactly one output for exactly one input. To keep inverse trigonometric functions consistent with this definition. We have to designate ranges for them that will take care of all the possible input values and don’t have any duplication.
Now, we have the graph of \[\cos x\] as,
Now, we can see that the function \[\cos x\] is many to one that is for many values of x the output is the same.
Now, we know that the domain of an inverse trigonometric function is the same as that of the range of its counter trigonometric function.
Now, we know that the range of \[\cos x\] is $\left[ -1,1 \right]$. Therefore, the domain of \[{{\cos }^{-1}}x\] is $\left[ -1,1 \right]$ for this the range of function \[{{\cos }^{-1}}x\] on graph is,
So, we have the range of \[{{\cos }^{-1}}x\] as $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$.
Note: To solve these types of questions it is important to note that we have used a fact that the range of a function is equal to the domain of its inverse. Also the domain of function is equal to the range of its inverse. Also, the inverse of a function exists, if the function is one – one and onto.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE