Answer
Verified
498.6k+ views
Hint: A circle bisects the circumference of another circle if the common chord of the two circles passes through the centre of the second circle. The common chord of the two circles is found simply by subtracting the two circles.
Let us first plot line $y=x$and the circle ${{x}^{2}}+{{y}^{2}}+2y-3=0$
For circle ${{x}^{2}}+{{y}^{2}}+2gx+2fy+C=0$
Centre \[\equiv \left( -g,-f \right)\] and radius $\text{= }\sqrt{{{g}^{2}}+{{f}^{2}}-C}$
For the given circle,
Centre $\equiv \left( 0,-1 \right)$
Radius $r=\sqrt{{{0}^{2}}+{{\left( 1 \right)}^{2}}-\left( -3 \right)}$
\[\begin{align}
& \Rightarrow r=\sqrt{1+3} \\
& \Rightarrow r=\sqrt{4} \\
& \Rightarrow r=2 \\
\end{align}\]
Using this data, we will plot the circle
Let us consider a circle having equation
${{x}^{2}}+{{y}^{2}}+2gx+2fy+C=0$
Since, this circle bisect the circumference of ${{x}^{2}}+{{y}^{2}}+2y-3=0$, the common chord of the two
circles must pass through the centre of ${{x}^{2}}+{{y}^{2}}+2y-3=0$ i.e., $\left( 0,-1 \right)$
The common chord of the two circles is found out by subtracting the equation of the two circles. Hence
the equation of the common chord of the two circles is,
$\begin{align}
& \left( {{x}^{2}}+{{y}^{2}}+2gx+2fy+C \right)-\left( {{x}^{2}}+{{y}^{2}}+2y-3 \right)=0 \\
& \Rightarrow 2gx+2y\left( f-1 \right)+C+3=0 \\
\end{align}$
This chord has $\left( 0,1 \right)$ on it. Substituting $x=0$ and $y=1$ in the common chord, we get 🡪
$\begin{align}
& 2g\left( 0 \right)+2\left( -1 \right)\left( f-1 \right)+C+3=0 \\
& \Rightarrow C-2f+5=0.........(i) \\
\end{align}$
It is given that circle ${{x}^{2}}+{{y}^{2}}+2y-3=0$ touches line $y=x$ at $\left( 0,0 \right)$. Substituting
$x=0$ and $y=0$ in ${{x}^{2}}+{{y}^{2}}+2gx+2fy+C=0$., we get 🡪
$\begin{align}
& \Rightarrow {{\left( 0 \right)}^{2}}+{{\left( 0 \right)}^{2}}+2g\left( 0 \right)+2f\left( 0 \right)+C=0 \\
& \Rightarrow C=0.........\left( ii \right) \\
\end{align}$
Also, in the question, it is given that $y=x$ is tangent to the required circle since it touches the circle.
Substituting \[y=x\] in ${{x}^{2}}+{{y}^{2}}+2gx+2fy+C=0$,
$\begin{align}
& {{x}^{2}}+{{x}^{2}}+2gx+2fx+C=0 \\
& \Rightarrow 2{{x}^{2}}+2\left( g+f \right)x+C=0.........\left( iii \right) \\
\end{align}$
Since the circle touches the line, there is only a single value of $x$ possible. So the roots of the above quadratic equation in $x$ must be equal. For roots of the quadratic equation to be equal, the discriminant of the quadratic equation must be 0.
For quadratic equation $a{{x}^{2}}+bx+C=0$
Discriminant $D={{b}^{2}}-4ac$
Substituting $a=2,\text{ }b=2\left( g+f \right)\text{ and }C=C$from equation $\left( iii \right)$, we get 🡪
$D={{\left( 2\left( g+f \right) \right)}^{2}}-4\left( 2 \right)\left( C \right)$
As explained in the above paragraph, $D=0$
$\Rightarrow 4{{\left( g+f \right)}^{2}}-4\left( 2 \right)\left( C \right)=0........\left( iv \right)$
From equation $\left( ii \right),C=0$
Substituting $C$ in $\left( i \right)$, we get
$\begin{align}
& 0-2f+5=0 \\
& \Rightarrow f=\dfrac{5}{2}...........\left( v \right) \\
\end{align}$
Substituting equation $\left( ii \right)$ and $\left( v \right)$ in equation$\left( iv \right)$,
$\begin{align}
& 4{{\left( g+\dfrac{5}{2} \right)}^{2}}-4\left( 2 \right)\left( 0 \right)=0 \\
& \Rightarrow 4{{\left( g+\dfrac{5}{2} \right)}^{2}}=0 \\
& \Rightarrow {{\left( g+\dfrac{5}{2} \right)}^{2}}=0 \\
& \Rightarrow g+\dfrac{5}{2}=0 \\
& \Rightarrow g=\dfrac{-5}{2}..........\left( vi \right) \\
\end{align}$
Substituting $C=0,f=\dfrac{5}{2},g=-\dfrac{5}{2}$ from equation $\left( ii \right),\left( v \right),\left( vi \right)$ in assumed circle i.e. ${{x}^{2}}+{{y}^{2}}+2gx+2fy+C=0$, then required circle is 🡪
${{x}^{2}}+{{y}^{2}}-5x+5y=0$
Note: There is an alternative approach to use the condition that line $y=x$ touches the circle. We can also find the perpendicular distance from the centre of the circle to the line and equate it to the radius of the circle instead of substituting $y=x$ in the circle and making the discriminant of quadratic $=0$.
Let us first plot line $y=x$and the circle ${{x}^{2}}+{{y}^{2}}+2y-3=0$
For circle ${{x}^{2}}+{{y}^{2}}+2gx+2fy+C=0$
Centre \[\equiv \left( -g,-f \right)\] and radius $\text{= }\sqrt{{{g}^{2}}+{{f}^{2}}-C}$
For the given circle,
Centre $\equiv \left( 0,-1 \right)$
Radius $r=\sqrt{{{0}^{2}}+{{\left( 1 \right)}^{2}}-\left( -3 \right)}$
\[\begin{align}
& \Rightarrow r=\sqrt{1+3} \\
& \Rightarrow r=\sqrt{4} \\
& \Rightarrow r=2 \\
\end{align}\]
Using this data, we will plot the circle
Let us consider a circle having equation
${{x}^{2}}+{{y}^{2}}+2gx+2fy+C=0$
Since, this circle bisect the circumference of ${{x}^{2}}+{{y}^{2}}+2y-3=0$, the common chord of the two
circles must pass through the centre of ${{x}^{2}}+{{y}^{2}}+2y-3=0$ i.e., $\left( 0,-1 \right)$
The common chord of the two circles is found out by subtracting the equation of the two circles. Hence
the equation of the common chord of the two circles is,
$\begin{align}
& \left( {{x}^{2}}+{{y}^{2}}+2gx+2fy+C \right)-\left( {{x}^{2}}+{{y}^{2}}+2y-3 \right)=0 \\
& \Rightarrow 2gx+2y\left( f-1 \right)+C+3=0 \\
\end{align}$
This chord has $\left( 0,1 \right)$ on it. Substituting $x=0$ and $y=1$ in the common chord, we get 🡪
$\begin{align}
& 2g\left( 0 \right)+2\left( -1 \right)\left( f-1 \right)+C+3=0 \\
& \Rightarrow C-2f+5=0.........(i) \\
\end{align}$
It is given that circle ${{x}^{2}}+{{y}^{2}}+2y-3=0$ touches line $y=x$ at $\left( 0,0 \right)$. Substituting
$x=0$ and $y=0$ in ${{x}^{2}}+{{y}^{2}}+2gx+2fy+C=0$., we get 🡪
$\begin{align}
& \Rightarrow {{\left( 0 \right)}^{2}}+{{\left( 0 \right)}^{2}}+2g\left( 0 \right)+2f\left( 0 \right)+C=0 \\
& \Rightarrow C=0.........\left( ii \right) \\
\end{align}$
Also, in the question, it is given that $y=x$ is tangent to the required circle since it touches the circle.
Substituting \[y=x\] in ${{x}^{2}}+{{y}^{2}}+2gx+2fy+C=0$,
$\begin{align}
& {{x}^{2}}+{{x}^{2}}+2gx+2fx+C=0 \\
& \Rightarrow 2{{x}^{2}}+2\left( g+f \right)x+C=0.........\left( iii \right) \\
\end{align}$
Since the circle touches the line, there is only a single value of $x$ possible. So the roots of the above quadratic equation in $x$ must be equal. For roots of the quadratic equation to be equal, the discriminant of the quadratic equation must be 0.
For quadratic equation $a{{x}^{2}}+bx+C=0$
Discriminant $D={{b}^{2}}-4ac$
Substituting $a=2,\text{ }b=2\left( g+f \right)\text{ and }C=C$from equation $\left( iii \right)$, we get 🡪
$D={{\left( 2\left( g+f \right) \right)}^{2}}-4\left( 2 \right)\left( C \right)$
As explained in the above paragraph, $D=0$
$\Rightarrow 4{{\left( g+f \right)}^{2}}-4\left( 2 \right)\left( C \right)=0........\left( iv \right)$
From equation $\left( ii \right),C=0$
Substituting $C$ in $\left( i \right)$, we get
$\begin{align}
& 0-2f+5=0 \\
& \Rightarrow f=\dfrac{5}{2}...........\left( v \right) \\
\end{align}$
Substituting equation $\left( ii \right)$ and $\left( v \right)$ in equation$\left( iv \right)$,
$\begin{align}
& 4{{\left( g+\dfrac{5}{2} \right)}^{2}}-4\left( 2 \right)\left( 0 \right)=0 \\
& \Rightarrow 4{{\left( g+\dfrac{5}{2} \right)}^{2}}=0 \\
& \Rightarrow {{\left( g+\dfrac{5}{2} \right)}^{2}}=0 \\
& \Rightarrow g+\dfrac{5}{2}=0 \\
& \Rightarrow g=\dfrac{-5}{2}..........\left( vi \right) \\
\end{align}$
Substituting $C=0,f=\dfrac{5}{2},g=-\dfrac{5}{2}$ from equation $\left( ii \right),\left( v \right),\left( vi \right)$ in assumed circle i.e. ${{x}^{2}}+{{y}^{2}}+2gx+2fy+C=0$, then required circle is 🡪
${{x}^{2}}+{{y}^{2}}-5x+5y=0$
Note: There is an alternative approach to use the condition that line $y=x$ touches the circle. We can also find the perpendicular distance from the centre of the circle to the line and equate it to the radius of the circle instead of substituting $y=x$ in the circle and making the discriminant of quadratic $=0$.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE