Answer
Verified
398.4k+ views
Hint: LCM (Least common Multiple) is the least or the smallest number with which the given numbers are exactly divisible. It is also known as the least common divisor. LCM can be expressed as the product of constant and HCF. Here first of all we will find the prime factors of the given two numbers and then LCM.
Complete step by step solution:
Find the prime factors of the given two or more numbers.
Prime factorization is the process of finding which prime numbers can be multiplied together to make the original number, where prime numbers are the numbers greater than $1$ and which are not the product of any two smaller natural numbers. For Example: $2,{\text{ 3, 5, 7,}}......$ $2$ is the prime number as it can have only $1$ factor. Here we will find the product of prime factors one by one for both the given numbers.
\[45 = 3 \times 3 \times 5\]
\[90 = 2 \times 3 \times 3 \times 5\]
\[30 = 2 \times 3 \times 5\]
LCM can be expressed as the product of the highest power of each factor involved in the numbers.
Therefore, the LCM of the given three numbers 45, 90 and 30 is $ = {2^1} \times {3^2} \times {5^1} = 90$
This is the required solution.
Therefore, the LCM of $45,90$ and $30$ is $90$. So, the correct option is (A).
Note:
To solve these types of sums, one should be clear about the concept of HCF and LCM and the prime numbers. HCF is the highest or greatest common multiple whereas the LCM is the least common multiple or least common divisor in two or more given numbers. Prime numbers are the numbers greater than $1$ and which are not the product of any two smaller natural numbers. For Example: $2,{\text{ 3, 5, 7,}}......$ $2$ is the prime number as it can have only $1$ factor. Factors are the number $1$ and the number itself. Also, remember that we get the prime factorization of any composite number.
Complete step by step solution:
Find the prime factors of the given two or more numbers.
Prime factorization is the process of finding which prime numbers can be multiplied together to make the original number, where prime numbers are the numbers greater than $1$ and which are not the product of any two smaller natural numbers. For Example: $2,{\text{ 3, 5, 7,}}......$ $2$ is the prime number as it can have only $1$ factor. Here we will find the product of prime factors one by one for both the given numbers.
\[45 = 3 \times 3 \times 5\]
\[90 = 2 \times 3 \times 3 \times 5\]
\[30 = 2 \times 3 \times 5\]
LCM can be expressed as the product of the highest power of each factor involved in the numbers.
Therefore, the LCM of the given three numbers 45, 90 and 30 is $ = {2^1} \times {3^2} \times {5^1} = 90$
This is the required solution.
Therefore, the LCM of $45,90$ and $30$ is $90$. So, the correct option is (A).
Note:
To solve these types of sums, one should be clear about the concept of HCF and LCM and the prime numbers. HCF is the highest or greatest common multiple whereas the LCM is the least common multiple or least common divisor in two or more given numbers. Prime numbers are the numbers greater than $1$ and which are not the product of any two smaller natural numbers. For Example: $2,{\text{ 3, 5, 7,}}......$ $2$ is the prime number as it can have only $1$ factor. Factors are the number $1$ and the number itself. Also, remember that we get the prime factorization of any composite number.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE