Answer
Verified
498.6k+ views
Hint: To find the prime factors, start by dividing the number by the prime numbers and observe the remainders, if they are equal to 0 or not.
Start by dividing the number by the first prime number, which is $2$. If there is no remainder., it means you can divide evenly, then \[2\] is a factor of the number. Continue dividing by $2$ until you cannot divide evenly anymore. Write down how many \[2's\] you were able to divide the number by evenly. Now try dividing by the next prime factor, which is \[3\] . Ultimately the goal is to get to a quotient of \[1\].
\[13,915{\text{ }} \div {\text{ }}2{\text{ }} = {\text{ }}6,957.5\] - This has a remainder. Let's try another prime number.
\[13,915{\text{ }} \div {\text{ }}3{\text{ }} = {\text{ }}4,638.3333\] - This has a remainder. Let's try another prime number.
\[13,915{\text{ }} \div {\text{ }}5{\text{ }} = {\text{ }}2,783\] - There is no remainder. Hence, \[5\] is one of the factors.
\[2,783{\text{ }} \div {\text{ }}5{\text{ }} = {\text{ }}556.6\] - There is a remainder. We can't divide by \[5\] evenly anymore. Let's try the next prime number.
\[2,783{\text{ }} \div {\text{ }}7{\text{ }} = {\text{ }}397.5714\] - This has a remainder. \[7\] is not a factor.
\[2,783{\text{ }} \div {\text{ }}11{\text{ }} = {\text{ }}253\] - There is no remainder. Hence, \[11\] is one of the factors.
\[253{\text{ }} \div {\text{ }}11{\text{ }} = {\text{ }}23\] - There is no remainder. Hence, \[11\] is one of the factors.
\[23{\text{ }} \div {\text{ }}11{\text{ }} = {\text{ }}2.0909\] - There is a remainder. We can't divide by \[11\] evenly anymore. Let's try the next prime number
\[23{\text{ }} \div {\text{ }}13{\text{ }} = {\text{ }}1.7692\] - This has a remainder. \[13\] is not a factor.
\[23{\text{ }} \div {\text{ }}17{\text{ }} = {\text{ }}1.3529\] - This has a remainder. \[17\] is not a factor.
\[23{\text{ }} \div {\text{ }}19{\text{ }} = {\text{ }}1.2105\] - This has a remainder. \[19\] is not a factor.
\[23{\text{ }} \div {\text{ }}23{\text{ }} = {\text{ }}1\] - There is no remainder. Hence, \[23\] is one of the factors.
The prime factors of the given number are $5$, $11$, $23$.
As we can see, we can write $13915$ as $5 \times 11 \times 11 \times 23$. It can also be written in exponential form as ${5^1} \times {11^2} \times {23^1}$.
Note:
The prime factors of a number are all the prime numbers that, when multiplied together (while also taking in account the number of times they have occurred), equals the original number. You can find the prime factorization of a number by using a factor tree anddividing the number into smaller parts.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers