Answer
Verified
498.6k+ views
Hint: Convert the equations into matrix format and Equate the determinant $D$ of this matrix to zero using this to calculate the value of k to reach the answer.
Complete step-by-step answer:
Given system of equations is:
$
\left( {3k + 1} \right)x + 3y - 2 = 0 \\
\left( {{k^2} + 1} \right)x + \left( {k - 2} \right)y - 5 = 0 \\
$
Convert these equations into matrix format
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{\left( {3k + 1} \right)}&3 \\
{\left( {{k^2} + 1} \right)}&{\left( {k - 2} \right)}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2 \\
5
\end{array}} \right]$
The system of equations has no solutions if the value of determinant $\left( D \right) = 0$, and at least one of the determinant $\left( {{D_1}{\text{ and }}{{\text{D}}_2}} \right)$ is non-zero.
So, determinant $\left( D \right)$ of the above system of equations is given below
So, ${\text{D = }}\left| {\begin{array}{*{20}{c}}
{\left( {3k + 1} \right)}&3 \\
{\left( {{k^2} + 1} \right)}&{\left( {k - 2} \right)}
\end{array}} \right|$
Now put this determinant equal to zero and calculate the value of $k$ for which the system of equations has no solution.
$
\Rightarrow {\text{D = }}\left| {\begin{array}{*{20}{c}}
{\left( {3k + 1} \right)}&3 \\
{\left( {{k^2} + 1} \right)}&{\left( {k - 2} \right)}
\end{array}} \right| = 0 \\
\Rightarrow \left( {3k + 1} \right)\left( {k - 2} \right) - \left( {{k^2} + 1} \right)3 = 0 \\
\Rightarrow 3{k^2} - 6k + k - 2 - 3{k^2} - 3 = 0 \\
\Rightarrow - 5k - 5 = 0 \\
\Rightarrow k = - 1 \\
$
So, for $k = - 1$, the value of determinant is zero.
Now calculate the value of determinant ${{\text{D}}_1}$ at this value of $k$, to ensure that the condition is satisfied for no solution. The value of determinant ${{\text{D}}_1}$ should not be equal to zero.
If first column is replaced with column $\left[ {\begin{array}{*{20}{c}}
2 \\
5
\end{array}} \right]{\text{ }}$, then the determinant D is converted into determinant ${{\text{D}}_1}$, according to Cramer Rule.
$ \Rightarrow {{\text{D}}_1} = \left| {\begin{array}{*{20}{c}}
2&3 \\
5&{\left( {k - 2} \right)}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
2&3 \\
5&{\left( { - 1 - 2} \right)}
\end{array}} \right| = 2\left( { - 1 - 2} \right) - 3 \times 5 = - 6 - 15 = - 21 \ne 0$
Therefore the system of equations has no solution for $ k = - 1$.
Note: Whenever we face such types of questions the key concept we have to remember is that put determinant ${\text{D = 0}}$, then calculate the value of $k$, then at this value of $k$ if the value of determinant ${{\text{D}}_1}{\text{ or }}{{\text{D}}_2}$ is non-zero then the system of equations has no solution at this value of $k$.
Complete step-by-step answer:
Given system of equations is:
$
\left( {3k + 1} \right)x + 3y - 2 = 0 \\
\left( {{k^2} + 1} \right)x + \left( {k - 2} \right)y - 5 = 0 \\
$
Convert these equations into matrix format
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{\left( {3k + 1} \right)}&3 \\
{\left( {{k^2} + 1} \right)}&{\left( {k - 2} \right)}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2 \\
5
\end{array}} \right]$
The system of equations has no solutions if the value of determinant $\left( D \right) = 0$, and at least one of the determinant $\left( {{D_1}{\text{ and }}{{\text{D}}_2}} \right)$ is non-zero.
So, determinant $\left( D \right)$ of the above system of equations is given below
So, ${\text{D = }}\left| {\begin{array}{*{20}{c}}
{\left( {3k + 1} \right)}&3 \\
{\left( {{k^2} + 1} \right)}&{\left( {k - 2} \right)}
\end{array}} \right|$
Now put this determinant equal to zero and calculate the value of $k$ for which the system of equations has no solution.
$
\Rightarrow {\text{D = }}\left| {\begin{array}{*{20}{c}}
{\left( {3k + 1} \right)}&3 \\
{\left( {{k^2} + 1} \right)}&{\left( {k - 2} \right)}
\end{array}} \right| = 0 \\
\Rightarrow \left( {3k + 1} \right)\left( {k - 2} \right) - \left( {{k^2} + 1} \right)3 = 0 \\
\Rightarrow 3{k^2} - 6k + k - 2 - 3{k^2} - 3 = 0 \\
\Rightarrow - 5k - 5 = 0 \\
\Rightarrow k = - 1 \\
$
So, for $k = - 1$, the value of determinant is zero.
Now calculate the value of determinant ${{\text{D}}_1}$ at this value of $k$, to ensure that the condition is satisfied for no solution. The value of determinant ${{\text{D}}_1}$ should not be equal to zero.
If first column is replaced with column $\left[ {\begin{array}{*{20}{c}}
2 \\
5
\end{array}} \right]{\text{ }}$, then the determinant D is converted into determinant ${{\text{D}}_1}$, according to Cramer Rule.
$ \Rightarrow {{\text{D}}_1} = \left| {\begin{array}{*{20}{c}}
2&3 \\
5&{\left( {k - 2} \right)}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
2&3 \\
5&{\left( { - 1 - 2} \right)}
\end{array}} \right| = 2\left( { - 1 - 2} \right) - 3 \times 5 = - 6 - 15 = - 21 \ne 0$
Therefore the system of equations has no solution for $ k = - 1$.
Note: Whenever we face such types of questions the key concept we have to remember is that put determinant ${\text{D = 0}}$, then calculate the value of $k$, then at this value of $k$ if the value of determinant ${{\text{D}}_1}{\text{ or }}{{\text{D}}_2}$ is non-zero then the system of equations has no solution at this value of $k$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE