Answer
Verified
422.7k+ views
Hint: First we know it is a horizontal or vertical hyperbola.
If it is a horizontal hyperbola since the $x$ term is positive.
\[\dfrac{{{{(x - h)}^2}}}{{{a^2}}} - \dfrac{{{{(y - k)}^2}}}{{{b^2}}} = 1\]
That means the curves open left and right.
If it is a vertical hyperbola since the $y$ term is positive.
$\dfrac{{{{(y - k)}^2}}}{{{a^2}}} - \dfrac{{{{(x - h)}^2}}}{{{b^2}}} = 1$
That means the curves open up and down.
Complete step by step answer:The graph of a hyperbola creates two smooth curves as pictured here:
There are two patterns for hyperbolas:
Horizontal:
\[\dfrac{{{{(x - h)}^2}}}{{{a^2}}} - \dfrac{{{{(y - k)}^2}}}{{{b^2}}} = 1\]
Vertical:
$\dfrac{{{{(y - k)}^2}}}{{{a^2}}} - \dfrac{{{{(x - h)}^2}}}{{{b^2}}} = 1$
We can determine the following:
If it is vertical or horizontal:
If the $x$ term is positive, the parabola is horizontal (the curves open left and right). The equation is,
\[\dfrac{{{{(x - h)}^2}}}{{{a^2}}} - \dfrac{{{{(y - k)}^2}}}{{{b^2}}} = 1\]
The horizontal parabola graph is
If the $y$ term is positive, the parabola is vertical (the curves open up and down). The equation is
$\dfrac{{{{(y - k)}^2}}}{{{a^2}}} - \dfrac{{{{(x - h)}^2}}}{{{b^2}}} = 1$
The vertical parabola graph is
The center point as with all conic sections, the center points $(h,k)$ . Notice that the $h$ is always with the $x$ and the $k$ is always with the $y$ . There is also a negative in front of each, so you must take the opposite.
The $a$ and $b$ values will be needed to graph the parabola. Notice that $a$ is always under the positive term and $b$ is always under the negative.
Note:
Notice that $(h,k)$ is the center of the entire hyperbola but does not fall on the hyperbola itself. Each hyperbola has a vertex and two asymptotes guide how wide or how narrow the curve.
If $x$ is on the front, the hyperbola opens horizontally.
If $y$ is on the front, the hyperbola opens vertically.
If it is a horizontal hyperbola since the $x$ term is positive.
\[\dfrac{{{{(x - h)}^2}}}{{{a^2}}} - \dfrac{{{{(y - k)}^2}}}{{{b^2}}} = 1\]
That means the curves open left and right.
If it is a vertical hyperbola since the $y$ term is positive.
$\dfrac{{{{(y - k)}^2}}}{{{a^2}}} - \dfrac{{{{(x - h)}^2}}}{{{b^2}}} = 1$
That means the curves open up and down.
Complete step by step answer:The graph of a hyperbola creates two smooth curves as pictured here:
There are two patterns for hyperbolas:
Horizontal:
\[\dfrac{{{{(x - h)}^2}}}{{{a^2}}} - \dfrac{{{{(y - k)}^2}}}{{{b^2}}} = 1\]
Vertical:
$\dfrac{{{{(y - k)}^2}}}{{{a^2}}} - \dfrac{{{{(x - h)}^2}}}{{{b^2}}} = 1$
We can determine the following:
If it is vertical or horizontal:
If the $x$ term is positive, the parabola is horizontal (the curves open left and right). The equation is,
\[\dfrac{{{{(x - h)}^2}}}{{{a^2}}} - \dfrac{{{{(y - k)}^2}}}{{{b^2}}} = 1\]
The horizontal parabola graph is
If the $y$ term is positive, the parabola is vertical (the curves open up and down). The equation is
$\dfrac{{{{(y - k)}^2}}}{{{a^2}}} - \dfrac{{{{(x - h)}^2}}}{{{b^2}}} = 1$
The vertical parabola graph is
The center point as with all conic sections, the center points $(h,k)$ . Notice that the $h$ is always with the $x$ and the $k$ is always with the $y$ . There is also a negative in front of each, so you must take the opposite.
The $a$ and $b$ values will be needed to graph the parabola. Notice that $a$ is always under the positive term and $b$ is always under the negative.
Note:
Notice that $(h,k)$ is the center of the entire hyperbola but does not fall on the hyperbola itself. Each hyperbola has a vertex and two asymptotes guide how wide or how narrow the curve.
If $x$ is on the front, the hyperbola opens horizontally.
If $y$ is on the front, the hyperbola opens vertically.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Find the value of the expression given below sin 30circ class 11 maths CBSE
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
What is BLO What is the full form of BLO class 8 social science CBSE