Answer
Verified
501.6k+ views
Hint: Using definition of binary operation.
(i) On ${Z^ + }$ , the binary operation$ * $ defined by $a * b = a - b$ is not a binary operation
Because if the points are taken as $\left( {1,2} \right)$ , then by applying binary operation, it becomes $1 - 2 = - 1$ and $ - 1$ does not belong to${Z^ + }$ .
(ii) On ${Z^ + }$ , the binary operation$ * $ defined by$a * b = ab$ is a binary operation because each element in ${Z^ + }$ has a unique element in ${Z^ + }$ .
(iii) On $R$ , the binary operation$ * $ defined by $a * b = a{b^2}$ is a binary operation because each element in $R$ has a unique element in $R$ .
(iv) On ${Z^ + }$ , the binary operation $ * $ defined by $a * b = \left| {a - b} \right|$ is a binary operation because each element in ${Z^ + }$ has a unique element in ${Z^ + }$ .
(v) On ${Z^ + }$ , the binary operation $ * $ defined by $a * b = a$ is a binary operation because each element in \[{Z^ + }\] has a unique element in \[{Z^ + }\] .
Note: - In order to prove that a given operation is not a binary operation just as in case I, we just need to show an example satisfying that the operation is not binary. But in all other cases, or to show that the given operation is binary we need to consider all the different possibilities and also some exceptional cases.
(i) On ${Z^ + }$ , the binary operation$ * $ defined by $a * b = a - b$ is not a binary operation
Because if the points are taken as $\left( {1,2} \right)$ , then by applying binary operation, it becomes $1 - 2 = - 1$ and $ - 1$ does not belong to${Z^ + }$ .
(ii) On ${Z^ + }$ , the binary operation$ * $ defined by$a * b = ab$ is a binary operation because each element in ${Z^ + }$ has a unique element in ${Z^ + }$ .
(iii) On $R$ , the binary operation$ * $ defined by $a * b = a{b^2}$ is a binary operation because each element in $R$ has a unique element in $R$ .
(iv) On ${Z^ + }$ , the binary operation $ * $ defined by $a * b = \left| {a - b} \right|$ is a binary operation because each element in ${Z^ + }$ has a unique element in ${Z^ + }$ .
(v) On ${Z^ + }$ , the binary operation $ * $ defined by $a * b = a$ is a binary operation because each element in \[{Z^ + }\] has a unique element in \[{Z^ + }\] .
Note: - In order to prove that a given operation is not a binary operation just as in case I, we just need to show an example satisfying that the operation is not binary. But in all other cases, or to show that the given operation is binary we need to consider all the different possibilities and also some exceptional cases.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE