
How to determine whether the element is electropositive or electronegative?
Answer
476.7k+ views
Hint: When the charge on the ion is positive then the element is called electropositive and if the charge on the ion is negative then the element is electronegative. Mostly electropositive elements are placed on the left side of the periodic table and the electronegative elements are placed right to the periodic table.
Complete step by step answer:
We can explain the term electropositive as the ability or tendency of the element to lose electrons and convert into a cation which has a positive charge.
We can explain the term electronegative as the ability or tendency of the element to gain or attract electrons towards it and convert into an anion which has a negative charge.
So we can find whether the element is electropositive or electronegative by seeing its tendency to either attract or lose an electron.
For example: Sodium element has configuration \[1{{s}^{2}}2{{s}^{2}}2{{p}^{6}}3{{s}^{1}}\]. So it has one valence electron in its outermost shell, which it can lose and become stable. Therefore on losing one electron it acquires a positive charge ($N{{a}^{+}}$) and is an electropositive element.
The Fluorine element has configuration $1{{s}^{2}}2{{s}^{2}}2{{p}^{5}}$. So it needs only one more electron in its outermost shell. So it has a strong tendency to attract an electron. Therefore by gaining one electron it acquires a negative charge (${{F}^{-}}$) and is an electronegative element.
All the electropositive elements are placed to the left of the periodic table and all the electronegative elements are placed right to the periodic table or we can say that towards right the electronegativity increases and the electropositivity decreases.
Note: The elements form positive ion or negative ion only to acquire the nearest noble gas configuration which is the most stable configuration. So, $N{{a}^{+}}$ has the configuration the same as neon, and ${{F}^{-}}$ also have the same configuration as neon.
Complete step by step answer:
We can explain the term electropositive as the ability or tendency of the element to lose electrons and convert into a cation which has a positive charge.
We can explain the term electronegative as the ability or tendency of the element to gain or attract electrons towards it and convert into an anion which has a negative charge.
So we can find whether the element is electropositive or electronegative by seeing its tendency to either attract or lose an electron.
For example: Sodium element has configuration \[1{{s}^{2}}2{{s}^{2}}2{{p}^{6}}3{{s}^{1}}\]. So it has one valence electron in its outermost shell, which it can lose and become stable. Therefore on losing one electron it acquires a positive charge ($N{{a}^{+}}$) and is an electropositive element.
The Fluorine element has configuration $1{{s}^{2}}2{{s}^{2}}2{{p}^{5}}$. So it needs only one more electron in its outermost shell. So it has a strong tendency to attract an electron. Therefore by gaining one electron it acquires a negative charge (${{F}^{-}}$) and is an electronegative element.
All the electropositive elements are placed to the left of the periodic table and all the electronegative elements are placed right to the periodic table or we can say that towards right the electronegativity increases and the electropositivity decreases.
Note: The elements form positive ion or negative ion only to acquire the nearest noble gas configuration which is the most stable configuration. So, $N{{a}^{+}}$ has the configuration the same as neon, and ${{F}^{-}}$ also have the same configuration as neon.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

Trending doubts
What are the elders in Goa nostalgic about class 11 social science CBSE

Formaldehyde at room temperature is ALiquid BGas CSolid class 11 chemistry CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

Distinguish between Mitosis and Meiosis class 11 biology CBSE

Why are forests affected by wars class 11 social science CBSE

Explain zero factorial class 11 maths CBSE
