Answer
Verified
446.1k+ views
Hint: We solve this problem by taking the regular hexagon and the list of diagonals.
We have the condition the regular hexagon has 6 sides of equal length. By using this statement we take the regular hexagon of 6 sides and then we take all the possible diagonals and count them to get the number of diagonals.
Complete step by step answer:
We are asked to find the number of diagonals of the regular hexagon.
Let us assume a regular hexagon ABCDEF as follows
Now, let us join all the possible vertices in the above hexagon then we get
Now, let us take the list of all possible diagonals in the above figure then we get
(1) AC
(2) AD
(3) AE
(4) BD
(5) BE
(6) BF
(7) CE
(8) CF
(9) DF
Here, we can see that we have a total of 9 diagonals
Therefore we can conclude that the number of diagonals of a regular hexagon is 9
So, option (b) is the correct answer.
Note:
We can solve this problem in another method also.
We are asked to find the number of diagonals for regular hexagons.
We know that a regular hexagon has 6 sides.
We have the direct formula for number of diagonals of \[n\] sided regular polygon as
\[N=\dfrac{n\left( n-3 \right)}{2}\]
By using the above formula to regular hexagon which has 6 sides then we get
\[\begin{align}
& \Rightarrow N=\dfrac{6\left( 6-3 \right)}{2} \\
& \Rightarrow N=3\times 3=9 \\
\end{align}\]
Therefore we can conclude that the number of diagonals of regular hexagon is 9
So, option (b) is the correct answer.
We have the condition the regular hexagon has 6 sides of equal length. By using this statement we take the regular hexagon of 6 sides and then we take all the possible diagonals and count them to get the number of diagonals.
Complete step by step answer:
We are asked to find the number of diagonals of the regular hexagon.
Let us assume a regular hexagon ABCDEF as follows
Now, let us join all the possible vertices in the above hexagon then we get
Now, let us take the list of all possible diagonals in the above figure then we get
(1) AC
(2) AD
(3) AE
(4) BD
(5) BE
(6) BF
(7) CE
(8) CF
(9) DF
Here, we can see that we have a total of 9 diagonals
Therefore we can conclude that the number of diagonals of a regular hexagon is 9
So, option (b) is the correct answer.
Note:
We can solve this problem in another method also.
We are asked to find the number of diagonals for regular hexagons.
We know that a regular hexagon has 6 sides.
We have the direct formula for number of diagonals of \[n\] sided regular polygon as
\[N=\dfrac{n\left( n-3 \right)}{2}\]
By using the above formula to regular hexagon which has 6 sides then we get
\[\begin{align}
& \Rightarrow N=\dfrac{6\left( 6-3 \right)}{2} \\
& \Rightarrow N=3\times 3=9 \\
\end{align}\]
Therefore we can conclude that the number of diagonals of regular hexagon is 9
So, option (b) is the correct answer.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE