Answer
Verified
470.7k+ views
Hint: We differentiate the term in the question by assuming the whole term as a variable and then taking log on both sides of the equation. Using the property of log we open RHS and then differentiate both sides.
*If m, n are two integers then, \[\log {(m)^n} = n(\log m)\]
Complete step-by-step answer:
Let us assume \[y = {(\cos x)^{\cos x}}\]
Then taking log on both sides of the equation we can write.
\[\log (y) = \log [{(\cos x)^{\cos x}}]\] … (1)
Since we know the property of log, if m, n are two integers then, \[\log {(m)^n} = n(\log m)\]
Here \[m = \cos x,n = \cos x\]
Therefore, we can write \[\log [{(\cos x)^{\cos x}}] = \cos x[\log (\cos x)]\]
Substituting the value in equation (1)
\[\log y = \cos x[\log (\cos x)]\]
Now we differentiate on both sides of the equation with respect to x.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right)\]
We will solve the RHS of the equation first.
We apply the product rule of differentiation on RHS of the equation.
Product rule says that \[\dfrac{d}{{dx}}(mn) = m\dfrac{{dn}}{{dx}} + n\dfrac{{dm}}{{dx}}\].
Substitute the values of \[m = \cos x,n = \log (\cos x)\]
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right) = \cos x\dfrac{{d[\log (\cos x)]}}{{dx}} + [\log (\cos x)]\dfrac{{d(\cos x)}}{{dx}} \\
\Rightarrow \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right) = \cos x\dfrac{{d[\log (\cos x)]}}{{dx}} + [\log (\cos x)]( - \sin x) \\
\]
… (2)
Now we have to apply chain rule for differentiation of the term \[[\log (\cos x)]\].
According to chain rule \[\dfrac{d}{{dx}}\left[ {f(g(x))} \right] = f'(g(x)).g'(x)\]where \[f'\]denotes differentiation of function f with respect to x and \[g'\]denotes differentiation of function g with respect to x.
Here substituting the values of \[f(x) = \log (x),g(x) = \cos x\]
\[
\dfrac{d}{{dx}}\left[ {\log (\cos x)} \right] = \dfrac{{d[\log (\cos x)]}}{{dx}}.\dfrac{{d(\cos x)}}{{dx}} \\
\dfrac{d}{{dx}}\left[ {\log (\cos x)} \right] = \dfrac{1}{{\cos x}}.( - \sin x) \\
\]
Substitute the value in equation (2)
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right) = \cos x \times \dfrac{1}{{\cos x}} \times ( - \sin x) + [\log (\cos x)]( - \sin x)\]
Cancel out the common terms from numerator and denominator.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right) = - \sin x - \sin x[\log (\cos x)]\]
Now we can take \[ - \sin x\] common and write the terms in RHS.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right) = - \sin x\{ 1 + \log (\cos x)\} \]
Now solving LHS of the equation we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{1}{y} \times \dfrac{{dy}}{{dx}}\] {Applying chain rule}
Now equating both LHS and RHS of the equation we get
\[ \Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = - \sin x\{ 1 + \log (\cos x)\} \]
Cross multiplying the value of y to RHS of the equation.
\[
\Rightarrow \dfrac{{dy}}{{dx}} = - \sin x\{ 1 + \log (\cos x)\} \times y \\
\Rightarrow \dfrac{{dy}}{{dx}} = - \sin x\{ 1 + \log (\cos x)\} \times {(\cos x)^{\cos x}} \\
\]
Thus, differentiation of \[{(\cos x)^{\cos x}}\] is \[ - \sin x\{ 1 + \log (\cos x)\} \times {(\cos x)^{\cos x}}\].
Note: Students are likely to make mistake in solving this question as they assume the power as normal power and try to differentiate directly through the way \[\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}\] which is wrong.
*If m, n are two integers then, \[\log {(m)^n} = n(\log m)\]
Complete step-by-step answer:
Let us assume \[y = {(\cos x)^{\cos x}}\]
Then taking log on both sides of the equation we can write.
\[\log (y) = \log [{(\cos x)^{\cos x}}]\] … (1)
Since we know the property of log, if m, n are two integers then, \[\log {(m)^n} = n(\log m)\]
Here \[m = \cos x,n = \cos x\]
Therefore, we can write \[\log [{(\cos x)^{\cos x}}] = \cos x[\log (\cos x)]\]
Substituting the value in equation (1)
\[\log y = \cos x[\log (\cos x)]\]
Now we differentiate on both sides of the equation with respect to x.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right)\]
We will solve the RHS of the equation first.
We apply the product rule of differentiation on RHS of the equation.
Product rule says that \[\dfrac{d}{{dx}}(mn) = m\dfrac{{dn}}{{dx}} + n\dfrac{{dm}}{{dx}}\].
Substitute the values of \[m = \cos x,n = \log (\cos x)\]
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right) = \cos x\dfrac{{d[\log (\cos x)]}}{{dx}} + [\log (\cos x)]\dfrac{{d(\cos x)}}{{dx}} \\
\Rightarrow \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right) = \cos x\dfrac{{d[\log (\cos x)]}}{{dx}} + [\log (\cos x)]( - \sin x) \\
\]
… (2)
Now we have to apply chain rule for differentiation of the term \[[\log (\cos x)]\].
According to chain rule \[\dfrac{d}{{dx}}\left[ {f(g(x))} \right] = f'(g(x)).g'(x)\]where \[f'\]denotes differentiation of function f with respect to x and \[g'\]denotes differentiation of function g with respect to x.
Here substituting the values of \[f(x) = \log (x),g(x) = \cos x\]
\[
\dfrac{d}{{dx}}\left[ {\log (\cos x)} \right] = \dfrac{{d[\log (\cos x)]}}{{dx}}.\dfrac{{d(\cos x)}}{{dx}} \\
\dfrac{d}{{dx}}\left[ {\log (\cos x)} \right] = \dfrac{1}{{\cos x}}.( - \sin x) \\
\]
Substitute the value in equation (2)
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right) = \cos x \times \dfrac{1}{{\cos x}} \times ( - \sin x) + [\log (\cos x)]( - \sin x)\]
Cancel out the common terms from numerator and denominator.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right) = - \sin x - \sin x[\log (\cos x)]\]
Now we can take \[ - \sin x\] common and write the terms in RHS.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right) = - \sin x\{ 1 + \log (\cos x)\} \]
Now solving LHS of the equation we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{1}{y} \times \dfrac{{dy}}{{dx}}\] {Applying chain rule}
Now equating both LHS and RHS of the equation we get
\[ \Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = - \sin x\{ 1 + \log (\cos x)\} \]
Cross multiplying the value of y to RHS of the equation.
\[
\Rightarrow \dfrac{{dy}}{{dx}} = - \sin x\{ 1 + \log (\cos x)\} \times y \\
\Rightarrow \dfrac{{dy}}{{dx}} = - \sin x\{ 1 + \log (\cos x)\} \times {(\cos x)^{\cos x}} \\
\]
Thus, differentiation of \[{(\cos x)^{\cos x}}\] is \[ - \sin x\{ 1 + \log (\cos x)\} \times {(\cos x)^{\cos x}}\].
Note: Students are likely to make mistake in solving this question as they assume the power as normal power and try to differentiate directly through the way \[\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}\] which is wrong.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE