Differentiate $\dfrac{{x\log x}}{{{e^x}}}$ with respect to $x$
Answer
Verified
466.8k+ views
Hint: The problem can be solved with the Substitution Method. We have to substitute $\log x = t$. So, we will get $x = {e^t}$. Then put this value in the equation given the question and differentiate it.
Complete step-by-step answer:
Firstly, we will differentiate $\log x$
Substitute t at the place of $\log x$
$ \Rightarrow \log x = t$
$ \Rightarrow x = {e^t}$
Then, differentiating both sides, we get
$ \Rightarrow d\log x = dt$
$ \Rightarrow \dfrac{1}{x}dx = dt$
$ \Rightarrow \left( {\dfrac{{dt}}{{dx}}} \right) = x$
Putting the above value in $\dfrac{{x\log x}}{{{e^x}}}$, we get
$ \Rightarrow \dfrac{{{e^t}t}}{{{e^{{e^t}}}}} = {e^{(t - {e^t})}}t$
Differentiating w.r.t t,
Since the differentiation of ${e^x}$ is ${e^x}$
$ \Rightarrow 1.{e^{t - {e^t}}} + {e^{t - {e^t}}}(1 - {e^t})$
Further, we know that $\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dt}} \times \dfrac{{dt}}{{dx}} = \dfrac{{dy}}{{dt}} \times \dfrac{1}{x}$
So, put the value of t and multiply the whole equation by $\dfrac{1}{x}$.
$ \Rightarrow {\left( e \right)^{t - {e^t}}}(1 + t(1 - {e^t}))\dfrac{1}{x}$
$ \Rightarrow \dfrac{{{e^t}}}{{{e^{{e^t}}}}}(1 + t - t{e^t})\dfrac{1}{x}$
Putting the value $t = \log x$ in the above equation, we get
$ \Rightarrow \dfrac{1}{{{e^x}}}(1 + \log x - x\log x)$
Therefore $\dfrac{{x\log x}}{{{e^x}}}$ is equal to $\dfrac{1}{{{e^x}}}(1 + \log x - x\log x)$.
Note: Additional Information,
The differentiation of ${e^x}\log x$
This can be solved with successive differentiation concept,
$ \Rightarrow \dfrac{d}{{dx}}({e^x}\log x)$
$ \Rightarrow {e^x}\dfrac{d}{{dx}}(\log x) + \log x\dfrac{d}{{dx}}({e^x})$
$ \Rightarrow {e^x}\left( {\dfrac{1}{x}} \right) + logx({e^x})$
$ \Rightarrow {e^x}(\log x + \dfrac{1}{x})$
Complete step-by-step answer:
Firstly, we will differentiate $\log x$
Substitute t at the place of $\log x$
$ \Rightarrow \log x = t$
$ \Rightarrow x = {e^t}$
Then, differentiating both sides, we get
$ \Rightarrow d\log x = dt$
$ \Rightarrow \dfrac{1}{x}dx = dt$
$ \Rightarrow \left( {\dfrac{{dt}}{{dx}}} \right) = x$
Putting the above value in $\dfrac{{x\log x}}{{{e^x}}}$, we get
$ \Rightarrow \dfrac{{{e^t}t}}{{{e^{{e^t}}}}} = {e^{(t - {e^t})}}t$
Differentiating w.r.t t,
Since the differentiation of ${e^x}$ is ${e^x}$
$ \Rightarrow 1.{e^{t - {e^t}}} + {e^{t - {e^t}}}(1 - {e^t})$
Further, we know that $\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dt}} \times \dfrac{{dt}}{{dx}} = \dfrac{{dy}}{{dt}} \times \dfrac{1}{x}$
So, put the value of t and multiply the whole equation by $\dfrac{1}{x}$.
$ \Rightarrow {\left( e \right)^{t - {e^t}}}(1 + t(1 - {e^t}))\dfrac{1}{x}$
$ \Rightarrow \dfrac{{{e^t}}}{{{e^{{e^t}}}}}(1 + t - t{e^t})\dfrac{1}{x}$
Putting the value $t = \log x$ in the above equation, we get
$ \Rightarrow \dfrac{1}{{{e^x}}}(1 + \log x - x\log x)$
Therefore $\dfrac{{x\log x}}{{{e^x}}}$ is equal to $\dfrac{1}{{{e^x}}}(1 + \log x - x\log x)$.
Note: Additional Information,
The differentiation of ${e^x}\log x$
This can be solved with successive differentiation concept,
$ \Rightarrow \dfrac{d}{{dx}}({e^x}\log x)$
$ \Rightarrow {e^x}\dfrac{d}{{dx}}(\log x) + \log x\dfrac{d}{{dx}}({e^x})$
$ \Rightarrow {e^x}\left( {\dfrac{1}{x}} \right) + logx({e^x})$
$ \Rightarrow {e^x}(\log x + \dfrac{1}{x})$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
State the laws of reflection of light