Answer
Verified
429.9k+ views
Hint: In this problem, we find out the derivative using the chain rule of differentiation, which is $\dfrac{d}{dx}f\left( u\left( x \right) \right)=\dfrac{df}{du}\times \dfrac{du}{dx}$ . First, we differentiate ${{e}^{\cos x}}$ with respect to $\cos x$ and multiply the result with the derivative of $\cos x$ with respect to $x$ . By doing so, we arrive at the desired result.
Complete step by step solution:
The given equation we have is
$f\left( x \right)={{e}^{\cos x}}$
We can rewrite the above equation as
$\Rightarrow y={{e}^{\cos x}}$
Now for differentiation we apply chain rule for the right-hand part. According to the chain rule of differentiation: $\dfrac{d}{dx}f\left( u\left( x \right) \right)=\dfrac{df}{du}\times \dfrac{du}{dx}$
Here, the functions we have assumed are $f\left( u\left( x \right) \right)={{e}^{\cos x}}$ and $u\left( x \right)=\cos x$ .
Taking the main equation $y={{e}^{\cos x}}$ and differentiating both the sides, we get
$\dfrac{dy}{dx}=\dfrac{d\left\{ {{e}^{\cos x}} \right\}}{dx}$
Applying the chain rule of differentiation, we rewrite the above expression as,
$\Rightarrow \dfrac{dy}{dx}=\dfrac{d\left( {{e}^{\cos x}} \right)}{d\left( \cos x \right)}\times \dfrac{d\left( \cos x \right)}{dx}$
Further carrying out the differentiation, we know that the derivative of exponential functions gives nothing different, but the function itself and that the derivative of $\cos x$ is $-\left( \sin x \right)$ . Implementing these in the above equation, the above equation thus becomes
$\Rightarrow \dfrac{dy}{dx}={{e}^{\cos x}}\times \left( -\sin x \right)$
Simplifying the above equation, the above equation thus becomes
$\Rightarrow \dfrac{dy}{dx}=-{{e}^{\cos x}}\sin x$
Therefore, we conclude that the derivative of the given equation $y={{e}^{\cos x}}$ is $-{{e}^{\cos x}}\sin x$ .
Note:
While applying the chain rule, we come across a lot of functions and a lot of derivatives. Thus, we are most likely to make mistakes here. So, we must be careful while dealing with the chain rule and must take care of the various along with the signs. The derivative of the given expression can also be found out by using the definition of differentiation. But, that method will become too tedious to carry out and thus it is not advisable to do so.
Complete step by step solution:
The given equation we have is
$f\left( x \right)={{e}^{\cos x}}$
We can rewrite the above equation as
$\Rightarrow y={{e}^{\cos x}}$
Now for differentiation we apply chain rule for the right-hand part. According to the chain rule of differentiation: $\dfrac{d}{dx}f\left( u\left( x \right) \right)=\dfrac{df}{du}\times \dfrac{du}{dx}$
Here, the functions we have assumed are $f\left( u\left( x \right) \right)={{e}^{\cos x}}$ and $u\left( x \right)=\cos x$ .
Taking the main equation $y={{e}^{\cos x}}$ and differentiating both the sides, we get
$\dfrac{dy}{dx}=\dfrac{d\left\{ {{e}^{\cos x}} \right\}}{dx}$
Applying the chain rule of differentiation, we rewrite the above expression as,
$\Rightarrow \dfrac{dy}{dx}=\dfrac{d\left( {{e}^{\cos x}} \right)}{d\left( \cos x \right)}\times \dfrac{d\left( \cos x \right)}{dx}$
Further carrying out the differentiation, we know that the derivative of exponential functions gives nothing different, but the function itself and that the derivative of $\cos x$ is $-\left( \sin x \right)$ . Implementing these in the above equation, the above equation thus becomes
$\Rightarrow \dfrac{dy}{dx}={{e}^{\cos x}}\times \left( -\sin x \right)$
Simplifying the above equation, the above equation thus becomes
$\Rightarrow \dfrac{dy}{dx}=-{{e}^{\cos x}}\sin x$
Therefore, we conclude that the derivative of the given equation $y={{e}^{\cos x}}$ is $-{{e}^{\cos x}}\sin x$ .
Note:
While applying the chain rule, we come across a lot of functions and a lot of derivatives. Thus, we are most likely to make mistakes here. So, we must be careful while dealing with the chain rule and must take care of the various along with the signs. The derivative of the given expression can also be found out by using the definition of differentiation. But, that method will become too tedious to carry out and thus it is not advisable to do so.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE