Answer
Verified
429.9k+ views
Hint: We first define the multiplication rule and how the differentiation of function works. We take addition of these two different differentiated values. We take the $\dfrac{dy}{dx}$ altogether. We keep one function and differentiate the other one and then do the same thing with the other function. Then we take the addition to complete the formula.
Complete step-by-step solution:
We now discuss the multiplication process of two functions where \[f\left( x \right)=u\left( x \right)v\left( x \right)\]
Differentiating \[f\left( x \right)=uv\], we get \[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ uv \right]=u\dfrac{dv}{dx}+v\dfrac{du}{dx}\].
The above-mentioned rule is the multiplication rule. We apply that on $f\left( x \right)={{e}^{x}}\ln x$. We assume the functions where \[u\left( x \right)={{e}^{x}},v\left( x \right)=\ln x\]
We know that differentiation of \[u\left( x \right)={{e}^{x}}\] is ${{u}^{'}}\left( x \right)={{e}^{x}}$ and differentiation of \[v\left( x \right)=\ln x\] is \[{{v}^{'}}\left( x \right)=\dfrac{1}{x}\]. We now take differentiation on both parts of $f\left( x \right)={{e}^{x}}\ln x$ and get \[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ {{e}^{x}}\ln x \right]\].
We place the values of ${{u}^{'}}\left( x \right)={{e}^{x}}$ and \[{{v}^{'}}\left( x \right)=\dfrac{1}{x}\] to get
\[\dfrac{d}{dx}\left[ {{e}^{x}}\ln x \right]={{e}^{x}}\dfrac{d}{dx}\left( \ln x \right)+\left( \ln x \right)\dfrac{d}{dx}\left( {{e}^{x}} \right)\].
We take all the $\dfrac{dy}{dx}$ forms altogether to get
\[\begin{align}
& \dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ {{e}^{x}}\ln x \right] \\
& \Rightarrow {{f}^{'}}\left( x \right)={{e}^{x}}\times \dfrac{1}{x}+\left( \ln x \right)\left( {{e}^{x}} \right)=\dfrac{{{e}^{x}}}{x}+{{e}^{x}}\ln x \\
& \Rightarrow {{f}^{'}}\left( x \right)={{e}^{x}}\left( \ln x+\dfrac{1}{x} \right) \\
\end{align}\]
Therefore, differentiation of $f\left( x \right)={{e}^{x}}\ln x$ is \[{{e}^{x}}\left( \ln x+\dfrac{1}{x} \right)\].
Note: We need to remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Cancelation of the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate. The rule may be extended or generalized to many other situations, including to products of multiple functions, to a rule for higher-order derivatives of a product, and to other contexts.
Complete step-by-step solution:
We now discuss the multiplication process of two functions where \[f\left( x \right)=u\left( x \right)v\left( x \right)\]
Differentiating \[f\left( x \right)=uv\], we get \[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ uv \right]=u\dfrac{dv}{dx}+v\dfrac{du}{dx}\].
The above-mentioned rule is the multiplication rule. We apply that on $f\left( x \right)={{e}^{x}}\ln x$. We assume the functions where \[u\left( x \right)={{e}^{x}},v\left( x \right)=\ln x\]
We know that differentiation of \[u\left( x \right)={{e}^{x}}\] is ${{u}^{'}}\left( x \right)={{e}^{x}}$ and differentiation of \[v\left( x \right)=\ln x\] is \[{{v}^{'}}\left( x \right)=\dfrac{1}{x}\]. We now take differentiation on both parts of $f\left( x \right)={{e}^{x}}\ln x$ and get \[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ {{e}^{x}}\ln x \right]\].
We place the values of ${{u}^{'}}\left( x \right)={{e}^{x}}$ and \[{{v}^{'}}\left( x \right)=\dfrac{1}{x}\] to get
\[\dfrac{d}{dx}\left[ {{e}^{x}}\ln x \right]={{e}^{x}}\dfrac{d}{dx}\left( \ln x \right)+\left( \ln x \right)\dfrac{d}{dx}\left( {{e}^{x}} \right)\].
We take all the $\dfrac{dy}{dx}$ forms altogether to get
\[\begin{align}
& \dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ {{e}^{x}}\ln x \right] \\
& \Rightarrow {{f}^{'}}\left( x \right)={{e}^{x}}\times \dfrac{1}{x}+\left( \ln x \right)\left( {{e}^{x}} \right)=\dfrac{{{e}^{x}}}{x}+{{e}^{x}}\ln x \\
& \Rightarrow {{f}^{'}}\left( x \right)={{e}^{x}}\left( \ln x+\dfrac{1}{x} \right) \\
\end{align}\]
Therefore, differentiation of $f\left( x \right)={{e}^{x}}\ln x$ is \[{{e}^{x}}\left( \ln x+\dfrac{1}{x} \right)\].
Note: We need to remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Cancelation of the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate. The rule may be extended or generalized to many other situations, including to products of multiple functions, to a rule for higher-order derivatives of a product, and to other contexts.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE