Answer
Verified
498.9k+ views
Hint: Assume $u={{x}^{\tan x}}\ and\ v={{\left( \tan x \right)}^{x}}$ and differentiate the equations with respect to $x$ by taking log on both sides.
Complete step-by-step answer:
It is given in the question to differentiate the expression,${{\left( x \right)}^{\tan x}}+{{\left( \tan x \right)}^{x}}$ with respect to $x$.
Let us consider the given expression as,
$y={{x}^{\tan x}}+{{\left( \tan x \right)}^{x}}$
Let us assume that $u={{x}^{\tan x}}\ and\ v={{\left( \tan x \right)}^{x}}$ respectively, we get,
$y=u+v$
Now, we have $u={{x}^{\tan x}}$.
So, taking log on both the sides, we get,
$\log u=\log {{x}^{\tan x}}$
As we know that $\log {{a}^{b}}=b\log a$, we can write as,
$\Rightarrow \log u=\tan x.\log x$
Now, differentiating above equation with respect to $x$, we get,
\[\dfrac{d}{dx}\left( \log u \right)=\dfrac{d}{dx}\left( \tan x.\log x \right)\]
We can use the chain rule for differentiating the RHS as below,
\[\dfrac{d}{dx}\left( \log u \right)=\tan x\dfrac{d}{dx}\left( \log x \right)+\log x\dfrac{d}{dx}\left( \tan x \right)\]
Since, we know that the derivative of $\log x$is $\dfrac{1}{x}$ and $\tan x$ is ${{\sec }^{2}}x$, we can write,
$\begin{align}
& \Rightarrow \dfrac{1}{u}.\dfrac{dy}{dx}=\tan x\left( \dfrac{1}{x} \right)+\log x\left( {{\sec }^{2}}x \right) \\
& \Rightarrow \dfrac{dy}{dx}=u\left( \dfrac{\tan x}{x}+{{\sec }^{2}}x\log x \right)..............\left( 1 \right) \\
\end{align}$
Now putting the value of $u$ in equation (1), we get,
$\dfrac{du}{dx}={{x}^{\tan x}}\left( \dfrac{\tan x}{x}+{{\sec }^{2}}x\log x \right)$
Similarly, we have,$v={{\left( \tan x \right)}^{x}}$.
Again, taking log on both the sides, we get,
$\log v=\log {{\left( \tan x \right)}^{x}}$
As we know that $\log {{a}^{b}}=b\log a$, we can write as,
$\log v=x\log \left( \tan x \right)$
Now, we will differentiate the above equation with respect to $x$. We can use the chain rule on RHS and the standard derivatives and we get,
$\begin{align}
& \Rightarrow \dfrac{1}{v}\dfrac{dv}{dx}=\log \left( \tan x \right).1+x\left( \dfrac{1}{\tan x}.{{\sec }^{2}}x \right) \\
& \Rightarrow \dfrac{dv}{dx}=v\left( \log \left( \tan x \right)+\dfrac{x{{\sec }^{2}}x}{\tan x} \right) \\
& \Rightarrow \dfrac{dv}{dx}={{\left( \tan x \right)}^{x}}\left( \log \left( \tan x \right)+\dfrac{x{{\sec }^{2}}x}{\tan x} \right)............\left( 2 \right) \\
\end{align}$
Therefore, we get,
$\dfrac{dy}{dx}=\dfrac{du}{dx}+\dfrac{dv}{dx}.............\left( 3 \right)$
Now putting the value of $\dfrac{du}{dx}\ and\ \dfrac{dv}{dx}$in equation (3) we get,
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{du}{dx}+\dfrac{dv}{dx} \\
& \dfrac{dy}{dx}={{x}^{\tan x}}\left( \dfrac{\tan x}{x}+{{\sec }^{2}}x\log x \right)+{{\left( \tan x \right)}^{x}}\left( \log \left( \tan x \right)+\dfrac{x{{\sec }^{2}}x}{\tan x} \right) \\
\end{align}$
Note: If you don’t assume $u={{x}^{\left( \tan x \right)}}\ and\ v={{\left( \tan x \right)}^{x}}$ then the solution will become more complex. And the chances of error while solving it will also increase. Always replace using a small variable in place of the complex part of any equation.
Complete step-by-step answer:
It is given in the question to differentiate the expression,${{\left( x \right)}^{\tan x}}+{{\left( \tan x \right)}^{x}}$ with respect to $x$.
Let us consider the given expression as,
$y={{x}^{\tan x}}+{{\left( \tan x \right)}^{x}}$
Let us assume that $u={{x}^{\tan x}}\ and\ v={{\left( \tan x \right)}^{x}}$ respectively, we get,
$y=u+v$
Now, we have $u={{x}^{\tan x}}$.
So, taking log on both the sides, we get,
$\log u=\log {{x}^{\tan x}}$
As we know that $\log {{a}^{b}}=b\log a$, we can write as,
$\Rightarrow \log u=\tan x.\log x$
Now, differentiating above equation with respect to $x$, we get,
\[\dfrac{d}{dx}\left( \log u \right)=\dfrac{d}{dx}\left( \tan x.\log x \right)\]
We can use the chain rule for differentiating the RHS as below,
\[\dfrac{d}{dx}\left( \log u \right)=\tan x\dfrac{d}{dx}\left( \log x \right)+\log x\dfrac{d}{dx}\left( \tan x \right)\]
Since, we know that the derivative of $\log x$is $\dfrac{1}{x}$ and $\tan x$ is ${{\sec }^{2}}x$, we can write,
$\begin{align}
& \Rightarrow \dfrac{1}{u}.\dfrac{dy}{dx}=\tan x\left( \dfrac{1}{x} \right)+\log x\left( {{\sec }^{2}}x \right) \\
& \Rightarrow \dfrac{dy}{dx}=u\left( \dfrac{\tan x}{x}+{{\sec }^{2}}x\log x \right)..............\left( 1 \right) \\
\end{align}$
Now putting the value of $u$ in equation (1), we get,
$\dfrac{du}{dx}={{x}^{\tan x}}\left( \dfrac{\tan x}{x}+{{\sec }^{2}}x\log x \right)$
Similarly, we have,$v={{\left( \tan x \right)}^{x}}$.
Again, taking log on both the sides, we get,
$\log v=\log {{\left( \tan x \right)}^{x}}$
As we know that $\log {{a}^{b}}=b\log a$, we can write as,
$\log v=x\log \left( \tan x \right)$
Now, we will differentiate the above equation with respect to $x$. We can use the chain rule on RHS and the standard derivatives and we get,
$\begin{align}
& \Rightarrow \dfrac{1}{v}\dfrac{dv}{dx}=\log \left( \tan x \right).1+x\left( \dfrac{1}{\tan x}.{{\sec }^{2}}x \right) \\
& \Rightarrow \dfrac{dv}{dx}=v\left( \log \left( \tan x \right)+\dfrac{x{{\sec }^{2}}x}{\tan x} \right) \\
& \Rightarrow \dfrac{dv}{dx}={{\left( \tan x \right)}^{x}}\left( \log \left( \tan x \right)+\dfrac{x{{\sec }^{2}}x}{\tan x} \right)............\left( 2 \right) \\
\end{align}$
Therefore, we get,
$\dfrac{dy}{dx}=\dfrac{du}{dx}+\dfrac{dv}{dx}.............\left( 3 \right)$
Now putting the value of $\dfrac{du}{dx}\ and\ \dfrac{dv}{dx}$in equation (3) we get,
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{du}{dx}+\dfrac{dv}{dx} \\
& \dfrac{dy}{dx}={{x}^{\tan x}}\left( \dfrac{\tan x}{x}+{{\sec }^{2}}x\log x \right)+{{\left( \tan x \right)}^{x}}\left( \log \left( \tan x \right)+\dfrac{x{{\sec }^{2}}x}{\tan x} \right) \\
\end{align}$
Note: If you don’t assume $u={{x}^{\left( \tan x \right)}}\ and\ v={{\left( \tan x \right)}^{x}}$ then the solution will become more complex. And the chances of error while solving it will also increase. Always replace using a small variable in place of the complex part of any equation.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE