Differentiate the following function with respect to x
${x^{ - 4}}(3 - 4{x^{ - 5}})$
Answer
Verified
506.1k+ views
Hint: Here, the given problem can be solved by simplifying the given function first
and then applying the suitable formulae of differentiation.
Given,
${x^{ - 4}}(3 - 4{x^{ - 5}}) \to (1)$
Let us simply the equation (1), we get
$3{x^{ - 4}} - 4{x^{ - 9}} \to (2)$
Now, we need to find the differentiation of equation (2) with respect to x i.e..,
$\begin{gathered}
\Rightarrow \frac{d}{{dx}}(3{x^{ - 4}} - 4{x^{ - 9}}) \\
\Rightarrow \frac{d}{{dx}}(3{x^{ - 4}}) - \frac{d}{{dx}}(4{x^{ - 9}}) \\
\Rightarrow 3\frac{d}{{dx}}({x^{ - 4}}) - 4\frac{d}{{dx}}({x^{ - 9}}) \\
\end{gathered} $
As we know that$\frac{d}{{dx}}({x^n}) = n.{x^{n - 1}}$.So applying the formulae, we get
$\begin{gathered}
\Rightarrow (3( - 4){x^{ - 4 - 1}}) - (4( - 9){x^{ - 9 - 1}}) \\
\Rightarrow - 12{x^{ - 5}} + 36{x^{ - 10}} \\
\end{gathered} $
Therefore$\frac{d}{{dx}}({x^{ - 4}}(3 - 4{x^{ - 5}})) = - 12{x^{ - 5}} + 36{x^{ - 10}}$.
Note: The differentiation formula of ${x^n}$i.e.., $\frac{d}{{dx}}({x^n}) = n.{x^{n - 1}}$can be
used for any value of n i.e.., it will be applicable even the value of n is positive, negative or
fractional value.
and then applying the suitable formulae of differentiation.
Given,
${x^{ - 4}}(3 - 4{x^{ - 5}}) \to (1)$
Let us simply the equation (1), we get
$3{x^{ - 4}} - 4{x^{ - 9}} \to (2)$
Now, we need to find the differentiation of equation (2) with respect to x i.e..,
$\begin{gathered}
\Rightarrow \frac{d}{{dx}}(3{x^{ - 4}} - 4{x^{ - 9}}) \\
\Rightarrow \frac{d}{{dx}}(3{x^{ - 4}}) - \frac{d}{{dx}}(4{x^{ - 9}}) \\
\Rightarrow 3\frac{d}{{dx}}({x^{ - 4}}) - 4\frac{d}{{dx}}({x^{ - 9}}) \\
\end{gathered} $
As we know that$\frac{d}{{dx}}({x^n}) = n.{x^{n - 1}}$.So applying the formulae, we get
$\begin{gathered}
\Rightarrow (3( - 4){x^{ - 4 - 1}}) - (4( - 9){x^{ - 9 - 1}}) \\
\Rightarrow - 12{x^{ - 5}} + 36{x^{ - 10}} \\
\end{gathered} $
Therefore$\frac{d}{{dx}}({x^{ - 4}}(3 - 4{x^{ - 5}})) = - 12{x^{ - 5}} + 36{x^{ - 10}}$.
Note: The differentiation formula of ${x^n}$i.e.., $\frac{d}{{dx}}({x^n}) = n.{x^{n - 1}}$can be
used for any value of n i.e.., it will be applicable even the value of n is positive, negative or
fractional value.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE