
Differentiate the following function with respect to x.
For the function f(x)=$\dfrac{{{x}^{100}}}{100}+\dfrac{{{x}^{99}}}{99}+.....+\dfrac{{{x}^{2}}}{2}+x+1.$ Prove that f’(1)=100f’(0).
Answer
522k+ views
Hint: Find differentiation of f(x) by using identity $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ then relate f’(1) and f’(0).
Complete step-by-step answer:
We have function given as;
f(x)=$\dfrac{{{x}^{100}}}{100}+\dfrac{{{x}^{99}}}{99}+.....+\dfrac{{{x}^{2}}}{2}+x+1..........\left( 1 \right)$
As, we have to prove
f ’(1)=100 f ’(0), so we need to calculate the first differentiation of f (x) or f ’(x).
Let us differentiate equation (1) with respect to x
$\dfrac{d}{dx}f(x)=f'(x)=\dfrac{d}{dx}\left( \dfrac{{{x}^{100}}}{100}+\dfrac{{{x}^{99}}}{99}+.....\dfrac{{{x}^{2}}}{2}+x+1 \right)$
As we have property of differentiation that
$\dfrac{d}{dx}\left( {{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right)+.......{{f}_{n}}\left( x \right) \right)=\dfrac{d}{dx}\left( \left( {{f}_{1}}\left( x \right) \right)+\dfrac{d}{dx}\left( {{f}_{2}}\left( x \right) \right)+.......\dfrac{d}{dx}\left( {{f}_{n}}\left( x \right) \right) \right)$
Using the above property, we can write f ’(x) as
$f'\left( x \right)=\dfrac{d}{dx}\left( \dfrac{{{x}^{100}}}{100} \right)+\dfrac{d}{dx}\left( \dfrac{{{x}^{99}}}{99} \right)+\dfrac{d}{dx}\left( \dfrac{{{x}^{98}}}{98} \right)+......\dfrac{d}{dx}\left( \dfrac{{{x}^{2}}}{2} \right)+\dfrac{d}{dx}\left( x \right)+\dfrac{d}{dx}\left( 1 \right)$
We have property of differentiation as
$\dfrac{d}{dx}\left( cf\left( x \right) \right)=c\dfrac{d}{dx}f\left( x \right)$ where c = constant
$\dfrac{d}{dx}\left( \text{constant} \right)=0$
Applying both the above properties with equation f ‘(x), we get;
$f'\left( x \right)=\dfrac{1}{100}\dfrac{d}{dx}\left( {{x}^{100}} \right)+\dfrac{1}{99}\dfrac{d}{dx}\left( {{x}^{99}} \right)+.....\dfrac{1}{2}\dfrac{d}{dx}\left( {{x}^{2}} \right)+\dfrac{d}{dx}\left( x \right)+0........\left( 2 \right)$
Now, we know differentiation of ${{x}^{n}}\text{ is }n{{x}^{n-1}}\text{ or }\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$
Using the above identity to the equation (2), we get;
$f'\left( x \right)=\dfrac{100}{100}{{x}^{99}}+\dfrac{99}{99}{{x}^{98}}+\dfrac{98}{98}{{x}^{97}}.....\dfrac{2}{2}{{x}^{1}}+1$
On simplifying the above equation, we get;
$f'\left( x \right)={{x}^{99}}+{{x}^{98}}+{{x}^{97}}.....{{x}^{1}}+1............\left( 3 \right)$
Now, coming to the question, we have to prove that
f ‘ (1) = 100 f ‘ (0)……………….(4)
Here, LHS past can be written from the equation (3) by just putting x=1 to both sides, we get;
$\begin{align}
& f'\left( 1 \right)=\left( {{1}^{99}} \right)+\left( {{1}^{98}} \right)+\left( {{1}^{97}} \right)+.....1+1 \\
& f'\left( 1 \right)=\dfrac{\left( 1+1+1+....1 \right)}{100times} \\
& f'\left( 1 \right)=100 \\
\end{align}$
For RHS part i.e. 100 f ‘ (0), we can get f ‘ (0) by just putting x = 0 in equation (3)
$\begin{align}
& f'\left( 0 \right)={{\left( 0 \right)}^{99}}+{{\left( 0 \right)}^{98}}+{{\left( 0 \right)}^{97}}.....0+1 \\
& f'\left( 0 \right)=1 \\
\end{align}$
RHS part is given as 100 f ‘ (0); Therefore,
RHS = f ‘ (0) = 100……………(6)
From equation (5) and (6), we get that the right hand side of both the equations are equal which means left should also be equal. Hence,
f '(1) =100 f ‘ (0)
Hence, Proved.
Note: One can go wrong while counting the number of 1’s in equation (5). We need to relate it with the powers given in equation (3) i.e. from 99 to 0 (powers) which in total is 100. Hence, the number of terms in f ‘ (x) will be 100.
One can go wrong when he/she tries to calculate first f (0) and f (1) from the given function i.e.
f (0) = 1 and
$f\left( 1 \right)=\dfrac{1}{100}+\dfrac{1}{99}+....1$
And now differentiate the above f (0) and f (1) and will get f ‘ (0) = 0 and f ‘ (1) = 0 which is wrong.
Hence, if we need to find f ‘ (constant) if f (x) is given, then first we have to find f ‘ (x), after that put x = constant get f ‘ (constant).
Complete step-by-step answer:
We have function given as;
f(x)=$\dfrac{{{x}^{100}}}{100}+\dfrac{{{x}^{99}}}{99}+.....+\dfrac{{{x}^{2}}}{2}+x+1..........\left( 1 \right)$
As, we have to prove
f ’(1)=100 f ’(0), so we need to calculate the first differentiation of f (x) or f ’(x).
Let us differentiate equation (1) with respect to x
$\dfrac{d}{dx}f(x)=f'(x)=\dfrac{d}{dx}\left( \dfrac{{{x}^{100}}}{100}+\dfrac{{{x}^{99}}}{99}+.....\dfrac{{{x}^{2}}}{2}+x+1 \right)$
As we have property of differentiation that
$\dfrac{d}{dx}\left( {{f}_{1}}\left( x \right)+{{f}_{2}}\left( x \right)+.......{{f}_{n}}\left( x \right) \right)=\dfrac{d}{dx}\left( \left( {{f}_{1}}\left( x \right) \right)+\dfrac{d}{dx}\left( {{f}_{2}}\left( x \right) \right)+.......\dfrac{d}{dx}\left( {{f}_{n}}\left( x \right) \right) \right)$
Using the above property, we can write f ’(x) as
$f'\left( x \right)=\dfrac{d}{dx}\left( \dfrac{{{x}^{100}}}{100} \right)+\dfrac{d}{dx}\left( \dfrac{{{x}^{99}}}{99} \right)+\dfrac{d}{dx}\left( \dfrac{{{x}^{98}}}{98} \right)+......\dfrac{d}{dx}\left( \dfrac{{{x}^{2}}}{2} \right)+\dfrac{d}{dx}\left( x \right)+\dfrac{d}{dx}\left( 1 \right)$
We have property of differentiation as
$\dfrac{d}{dx}\left( cf\left( x \right) \right)=c\dfrac{d}{dx}f\left( x \right)$ where c = constant
$\dfrac{d}{dx}\left( \text{constant} \right)=0$
Applying both the above properties with equation f ‘(x), we get;
$f'\left( x \right)=\dfrac{1}{100}\dfrac{d}{dx}\left( {{x}^{100}} \right)+\dfrac{1}{99}\dfrac{d}{dx}\left( {{x}^{99}} \right)+.....\dfrac{1}{2}\dfrac{d}{dx}\left( {{x}^{2}} \right)+\dfrac{d}{dx}\left( x \right)+0........\left( 2 \right)$
Now, we know differentiation of ${{x}^{n}}\text{ is }n{{x}^{n-1}}\text{ or }\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$
Using the above identity to the equation (2), we get;
$f'\left( x \right)=\dfrac{100}{100}{{x}^{99}}+\dfrac{99}{99}{{x}^{98}}+\dfrac{98}{98}{{x}^{97}}.....\dfrac{2}{2}{{x}^{1}}+1$
On simplifying the above equation, we get;
$f'\left( x \right)={{x}^{99}}+{{x}^{98}}+{{x}^{97}}.....{{x}^{1}}+1............\left( 3 \right)$
Now, coming to the question, we have to prove that
f ‘ (1) = 100 f ‘ (0)……………….(4)
Here, LHS past can be written from the equation (3) by just putting x=1 to both sides, we get;
$\begin{align}
& f'\left( 1 \right)=\left( {{1}^{99}} \right)+\left( {{1}^{98}} \right)+\left( {{1}^{97}} \right)+.....1+1 \\
& f'\left( 1 \right)=\dfrac{\left( 1+1+1+....1 \right)}{100times} \\
& f'\left( 1 \right)=100 \\
\end{align}$
For RHS part i.e. 100 f ‘ (0), we can get f ‘ (0) by just putting x = 0 in equation (3)
$\begin{align}
& f'\left( 0 \right)={{\left( 0 \right)}^{99}}+{{\left( 0 \right)}^{98}}+{{\left( 0 \right)}^{97}}.....0+1 \\
& f'\left( 0 \right)=1 \\
\end{align}$
RHS part is given as 100 f ‘ (0); Therefore,
RHS = f ‘ (0) = 100……………(6)
From equation (5) and (6), we get that the right hand side of both the equations are equal which means left should also be equal. Hence,
f '(1) =100 f ‘ (0)
Hence, Proved.
Note: One can go wrong while counting the number of 1’s in equation (5). We need to relate it with the powers given in equation (3) i.e. from 99 to 0 (powers) which in total is 100. Hence, the number of terms in f ‘ (x) will be 100.
One can go wrong when he/she tries to calculate first f (0) and f (1) from the given function i.e.
f (0) = 1 and
$f\left( 1 \right)=\dfrac{1}{100}+\dfrac{1}{99}+....1$
And now differentiate the above f (0) and f (1) and will get f ‘ (0) = 0 and f ‘ (1) = 0 which is wrong.
Hence, if we need to find f ‘ (constant) if f (x) is given, then first we have to find f ‘ (x), after that put x = constant get f ‘ (constant).
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the modal class for the following table given class 11 maths CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
