Differentiate the following functions with respect to \[x\]
(1) \[\sin \left\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\}\]
(2) \[{\cot ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} }}{x}} \right)\]
(3) \[{\tan ^{ - 1}}\left( {\dfrac{{a + x}}{{1 - ax}}} \right)\]
Answer
Verified
357.3k+ views
Hint: We use many differentiation formulas and differentiating techniques to solve this problem. We will use substitution methods and some simplification methods and solve this problem. In the substitution method, we will substitute a value for a variable, which makes our problem simpler.
Complete answer:
(1)
We have to differentiate \[\sin \left\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\}\] with respect to \[x\].
So, we have to find the value of \[\dfrac{d}{{dx}}\sin \left\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\}\]
So, we will use a substitution method to solve this problem.
We will substitute \[x = \cos 2\theta \] ------(a)
So, we get it as
\[\dfrac{d}{{dx}}\sin \left\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\} = \dfrac{d}{{dx}}\sin \left\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }}} } \right]} \right\}\]
We all know the formula \[\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }} = {\tan ^2}\theta \]
So, we can write it as
\[ \Rightarrow \dfrac{d}{{dx}}\sin \left\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\} = \dfrac{d}{{dx}}\sin \left\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {{{\tan }^2}\theta } } \right]} \right\}\]
\[ \Rightarrow \dfrac{d}{{dx}}\sin \left\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\} = \dfrac{d}{{dx}}\sin \left\{ {2{{\tan }^{ - 1}}\left[ {\tan \theta } \right]} \right\}\]
As we know that, \[{\tan ^{ - 1}}(\tan \theta ) = \theta \]
The equation will change as,
\[ \Rightarrow \dfrac{d}{{dx}}\sin \left\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\} = \dfrac{d}{{dx}}\sin \left\{ {2\theta } \right\}\]
So, now on differentiating this, we get,
\[ \Rightarrow \dfrac{d}{{dx}}\sin \left\{ {2\theta } \right\} = 2\cos 2\theta .\dfrac{{d\theta }}{{dx}}\] \[\left( {\because \dfrac{d}{{dx}}\sin x = \cos x} \right)\] and \[\left( {\because \dfrac{d}{{dx}}\cos x = - \sin x} \right)\]
From equation (a), \[x = \cos 2\theta \], differentiating this with respect to \[x\], we get, \[1 = - 2\sin 2\theta .\dfrac{{d\theta }}{{dx}}\]
So, from this, we can write, \[\dfrac{{d\theta }}{{dx}} = \dfrac{{ - 1}}{{2\sin 2\theta }}\]
Now substituting this value in our main result, we get,
\[\dfrac{d}{{dx}}\sin \left\{ {2\theta } \right\} = - 2\cos 2\theta .\dfrac{{ - 1}}{{2\sin 2\theta }}\]
\[ \Rightarrow \dfrac{d}{{dx}}\sin \left\{ {2\theta } \right\} = \cot 2\theta \]
Now, substituting back the real values in terms of \[x\], we get the final result as,
\[\dfrac{d}{{dx}}\sin \left\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\} = \cot \left[ {{{\cos }^{ - 1}}x} \right]\]
This is the required answer.
(2)
We have to differentiate \[{\cot ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} }}{x}} \right)\] with respect to \[x\].
So, we have to find \[\dfrac{d}{{dx}}{\cot ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} }}{x}} \right)\]
So, we will follow chain rule to solve this problem.
Chain rule is defined as \[\dfrac{d}{{dx}}f\left( {g\left( x \right)} \right) = f'\left( {g\left( x \right)} \right).g'\left( x \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}{\cot ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} }}{x}} \right) = \dfrac{{ - 1}}{{1 + {{\left( {\dfrac{{\sqrt {1 + {x^2}} }}{x}} \right)}^2}}}\dfrac{d}{{dx}}\left( {\dfrac{{\sqrt {1 + {x^2}} }}{x}} \right)\] \[\left( {\because \dfrac{d}{{dt}}{{\cot }^{ - 1}}t = \dfrac{{ - 1}}{{1 + {t^2}}}} \right)\]
\[ \Rightarrow \dfrac{{ - 1}}{{1 + \left( {\dfrac{{1 + {x^2}}}{{{x^2}}}} \right)}}\left( {\dfrac{{x\dfrac{d}{{dx}}\sqrt {1 + {x^2}} - \sqrt {1 + {x^2}} \dfrac{d}{{dx}}x}}{{{x^2}}}} \right)\] \[\left( {\because \dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v.du - u.dv}}{{{v^2}}}} \right)\]
Now, we have to simplify this as follows.
\[ \Rightarrow \dfrac{{ - 1}}{{\dfrac{{{x^2} + 1 + {x^2}}}{{{x^2}}}}}\left( {\dfrac{{x\left( {\dfrac{1}{{2\sqrt {1 + {x^2}} }}\dfrac{d}{{dx}}(1 + {x^2})} \right) - \sqrt {1 + {x^2}} }}{{{x^2}}}} \right)\] \[\left( {\because \dfrac{d}{{dt}}\sqrt t = \dfrac{1}{{2\sqrt t }}} \right)\] and \[\left( {\because \dfrac{d}{{dt}}{t^n} = n{t^{n - 1}}} \right)\]
\[ \Rightarrow \dfrac{{ - {x^2}}}{{2{x^2} + 1}}\left( {\dfrac{{x\left( {\dfrac{{2x}}{{2\sqrt {1 + {x^2}} }}} \right) - \sqrt {1 + {x^2}} }}{{{x^2}}}} \right)\]
So, finally we get the result as,
\[ \Rightarrow \dfrac{{ - 1}}{{2{x^2} + 1}}\left( {\left( {\dfrac{{{x^2}}}{{\sqrt {1 + {x^2}} }}} \right) - \sqrt {1 + {x^2}} } \right)\]
\[ \Rightarrow \dfrac{{ - 1}}{{2{x^2} + 1}}\left( {\dfrac{{{x^2} - (1 + {x^2})}}{{\sqrt {1 + {x^2}} }}} \right) = \dfrac{1}{{(2{x^2} + 1)\sqrt {1 + {x^2}} }}\]
So, finally, we can conclude that,
\[\dfrac{d}{{dx}}{\cot ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} }}{x}} \right) = \dfrac{1}{{(2{x^2} + 1)\sqrt {1 + {x^2}} }}\]
This is the required result.
(3)
We have to differentiate \[{\tan ^{ - 1}}\left( {\dfrac{{a + x}}{{1 - ax}}} \right)\] with respect to \[x\]
So, we have to find \[\dfrac{d}{{dx}}{\tan ^{ - 1}}\left( {\dfrac{{a + x}}{{1 - ax}}} \right)\]
Take \[a = \tan m\] and \[x = \tan n\]. So, when you differentiate the second substitution, we get, \[1 = {\sec ^2}n.\dfrac{{dn}}{{dx}}\] \[\left( {\because \dfrac{d}{{dt}}\tan t = {{\sec }^2}t} \right)\]
So, on substitution, we get,
\[\dfrac{d}{{dx}}{\tan ^{ - 1}}\left( {\dfrac{{a + x}}{{1 - ax}}} \right) = \dfrac{d}{{dx}}{\tan ^{ - 1}}\left( {\dfrac{{\tan m + \tan n}}{{1 - \tan m.\tan n}}} \right)\]
We know that, \[\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A.\tan B}}\]
\[ \Rightarrow \dfrac{d}{{dx}}{\tan ^{ - 1}}\left( {\tan (m + n)} \right)\]
And we know that, \[{\tan ^{ - 1}}(\tan \theta ) = \theta \]
So, we get,
\[ \Rightarrow \dfrac{d}{{dx}}\left( {m + n} \right) = \dfrac{d}{{dx}}m + \dfrac{d}{{dx}}n\]
As, \[m\] is constant,
V
\[ \Rightarrow \dfrac{d}{{dx}}\left( {m + n} \right) = 0 + \dfrac{1}{{{{\sec }^2}n}}\]
We know that, \[{\sec ^2}\theta - {\tan ^2}\theta = 1\]
From this, we can write as,
\[ \Rightarrow \dfrac{1}{{1 + {{\tan }^2}n}} = \dfrac{1}{{1 + {x^2}}}\]
So, finally the result is
\[\dfrac{d}{{dx}}{\tan ^{ - 1}}\left( {\dfrac{{a + x}}{{1 - ax}}} \right) = \dfrac{1}{{1 + {x^2}}}\]
This is the required result.
Note: Differentiation of a constant is always 0. And also make a note that, \[\dfrac{d}{{dx}}f(y) = f'(y).\dfrac{{dy}}{{dx}}\].
Also remember the formula \[{\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right) = {\tan ^{ - 1}}x + {\tan ^{ - 1}}y\] which will be very useful to you.
Differentiation of a function of another variable is always zero i.e., \[\dfrac{d}{{dx}}f(y) = 0\] if \[x{\text{ and }}y\] are not related.
Complete answer:
(1)
We have to differentiate \[\sin \left\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\}\] with respect to \[x\].
So, we have to find the value of \[\dfrac{d}{{dx}}\sin \left\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\}\]
So, we will use a substitution method to solve this problem.
We will substitute \[x = \cos 2\theta \] ------(a)
So, we get it as
\[\dfrac{d}{{dx}}\sin \left\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\} = \dfrac{d}{{dx}}\sin \left\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }}} } \right]} \right\}\]
We all know the formula \[\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }} = {\tan ^2}\theta \]
So, we can write it as
\[ \Rightarrow \dfrac{d}{{dx}}\sin \left\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\} = \dfrac{d}{{dx}}\sin \left\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {{{\tan }^2}\theta } } \right]} \right\}\]
\[ \Rightarrow \dfrac{d}{{dx}}\sin \left\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\} = \dfrac{d}{{dx}}\sin \left\{ {2{{\tan }^{ - 1}}\left[ {\tan \theta } \right]} \right\}\]
As we know that, \[{\tan ^{ - 1}}(\tan \theta ) = \theta \]
The equation will change as,
\[ \Rightarrow \dfrac{d}{{dx}}\sin \left\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\} = \dfrac{d}{{dx}}\sin \left\{ {2\theta } \right\}\]
So, now on differentiating this, we get,
\[ \Rightarrow \dfrac{d}{{dx}}\sin \left\{ {2\theta } \right\} = 2\cos 2\theta .\dfrac{{d\theta }}{{dx}}\] \[\left( {\because \dfrac{d}{{dx}}\sin x = \cos x} \right)\] and \[\left( {\because \dfrac{d}{{dx}}\cos x = - \sin x} \right)\]
From equation (a), \[x = \cos 2\theta \], differentiating this with respect to \[x\], we get, \[1 = - 2\sin 2\theta .\dfrac{{d\theta }}{{dx}}\]
So, from this, we can write, \[\dfrac{{d\theta }}{{dx}} = \dfrac{{ - 1}}{{2\sin 2\theta }}\]
Now substituting this value in our main result, we get,
\[\dfrac{d}{{dx}}\sin \left\{ {2\theta } \right\} = - 2\cos 2\theta .\dfrac{{ - 1}}{{2\sin 2\theta }}\]
\[ \Rightarrow \dfrac{d}{{dx}}\sin \left\{ {2\theta } \right\} = \cot 2\theta \]
Now, substituting back the real values in terms of \[x\], we get the final result as,
\[\dfrac{d}{{dx}}\sin \left\{ {2{{\tan }^{ - 1}}\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} \right\} = \cot \left[ {{{\cos }^{ - 1}}x} \right]\]
This is the required answer.
(2)
We have to differentiate \[{\cot ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} }}{x}} \right)\] with respect to \[x\].
So, we have to find \[\dfrac{d}{{dx}}{\cot ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} }}{x}} \right)\]
So, we will follow chain rule to solve this problem.
Chain rule is defined as \[\dfrac{d}{{dx}}f\left( {g\left( x \right)} \right) = f'\left( {g\left( x \right)} \right).g'\left( x \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}{\cot ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} }}{x}} \right) = \dfrac{{ - 1}}{{1 + {{\left( {\dfrac{{\sqrt {1 + {x^2}} }}{x}} \right)}^2}}}\dfrac{d}{{dx}}\left( {\dfrac{{\sqrt {1 + {x^2}} }}{x}} \right)\] \[\left( {\because \dfrac{d}{{dt}}{{\cot }^{ - 1}}t = \dfrac{{ - 1}}{{1 + {t^2}}}} \right)\]
\[ \Rightarrow \dfrac{{ - 1}}{{1 + \left( {\dfrac{{1 + {x^2}}}{{{x^2}}}} \right)}}\left( {\dfrac{{x\dfrac{d}{{dx}}\sqrt {1 + {x^2}} - \sqrt {1 + {x^2}} \dfrac{d}{{dx}}x}}{{{x^2}}}} \right)\] \[\left( {\because \dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v.du - u.dv}}{{{v^2}}}} \right)\]
Now, we have to simplify this as follows.
\[ \Rightarrow \dfrac{{ - 1}}{{\dfrac{{{x^2} + 1 + {x^2}}}{{{x^2}}}}}\left( {\dfrac{{x\left( {\dfrac{1}{{2\sqrt {1 + {x^2}} }}\dfrac{d}{{dx}}(1 + {x^2})} \right) - \sqrt {1 + {x^2}} }}{{{x^2}}}} \right)\] \[\left( {\because \dfrac{d}{{dt}}\sqrt t = \dfrac{1}{{2\sqrt t }}} \right)\] and \[\left( {\because \dfrac{d}{{dt}}{t^n} = n{t^{n - 1}}} \right)\]
\[ \Rightarrow \dfrac{{ - {x^2}}}{{2{x^2} + 1}}\left( {\dfrac{{x\left( {\dfrac{{2x}}{{2\sqrt {1 + {x^2}} }}} \right) - \sqrt {1 + {x^2}} }}{{{x^2}}}} \right)\]
So, finally we get the result as,
\[ \Rightarrow \dfrac{{ - 1}}{{2{x^2} + 1}}\left( {\left( {\dfrac{{{x^2}}}{{\sqrt {1 + {x^2}} }}} \right) - \sqrt {1 + {x^2}} } \right)\]
\[ \Rightarrow \dfrac{{ - 1}}{{2{x^2} + 1}}\left( {\dfrac{{{x^2} - (1 + {x^2})}}{{\sqrt {1 + {x^2}} }}} \right) = \dfrac{1}{{(2{x^2} + 1)\sqrt {1 + {x^2}} }}\]
So, finally, we can conclude that,
\[\dfrac{d}{{dx}}{\cot ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} }}{x}} \right) = \dfrac{1}{{(2{x^2} + 1)\sqrt {1 + {x^2}} }}\]
This is the required result.
(3)
We have to differentiate \[{\tan ^{ - 1}}\left( {\dfrac{{a + x}}{{1 - ax}}} \right)\] with respect to \[x\]
So, we have to find \[\dfrac{d}{{dx}}{\tan ^{ - 1}}\left( {\dfrac{{a + x}}{{1 - ax}}} \right)\]
Take \[a = \tan m\] and \[x = \tan n\]. So, when you differentiate the second substitution, we get, \[1 = {\sec ^2}n.\dfrac{{dn}}{{dx}}\] \[\left( {\because \dfrac{d}{{dt}}\tan t = {{\sec }^2}t} \right)\]
So, on substitution, we get,
\[\dfrac{d}{{dx}}{\tan ^{ - 1}}\left( {\dfrac{{a + x}}{{1 - ax}}} \right) = \dfrac{d}{{dx}}{\tan ^{ - 1}}\left( {\dfrac{{\tan m + \tan n}}{{1 - \tan m.\tan n}}} \right)\]
We know that, \[\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A.\tan B}}\]
\[ \Rightarrow \dfrac{d}{{dx}}{\tan ^{ - 1}}\left( {\tan (m + n)} \right)\]
And we know that, \[{\tan ^{ - 1}}(\tan \theta ) = \theta \]
So, we get,
\[ \Rightarrow \dfrac{d}{{dx}}\left( {m + n} \right) = \dfrac{d}{{dx}}m + \dfrac{d}{{dx}}n\]
As, \[m\] is constant,
V
\[ \Rightarrow \dfrac{d}{{dx}}\left( {m + n} \right) = 0 + \dfrac{1}{{{{\sec }^2}n}}\]
We know that, \[{\sec ^2}\theta - {\tan ^2}\theta = 1\]
From this, we can write as,
\[ \Rightarrow \dfrac{1}{{1 + {{\tan }^2}n}} = \dfrac{1}{{1 + {x^2}}}\]
So, finally the result is
\[\dfrac{d}{{dx}}{\tan ^{ - 1}}\left( {\dfrac{{a + x}}{{1 - ax}}} \right) = \dfrac{1}{{1 + {x^2}}}\]
This is the required result.
Note: Differentiation of a constant is always 0. And also make a note that, \[\dfrac{d}{{dx}}f(y) = f'(y).\dfrac{{dy}}{{dx}}\].
Also remember the formula \[{\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right) = {\tan ^{ - 1}}x + {\tan ^{ - 1}}y\] which will be very useful to you.
Differentiation of a function of another variable is always zero i.e., \[\dfrac{d}{{dx}}f(y) = 0\] if \[x{\text{ and }}y\] are not related.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
The quadratic equation whose one root is 2sqrt3 will class 10 maths JEE_Main
If alpha and beta are the roots of the equation x2 class 10 maths JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE