Answer
Verified
499.5k+ views
Hint: In this problem we have to convert the product of three trigonometric function in the form of addition by applying log properties i.e log(axbxc) = log a +log b + log c .
Let, $y = \cos x.\cos 2x.\cos 3x$ . Since their terms are in multiplication which we don’t want and we can get rid of this by taking logarithmic both sides because we know that $\log (m.n) = \log (m) + \log (n)$ .
$\
y = \cos x.\cos 2x.\cos 3x \\
\Rightarrow \log y = \log (\cos x) + \log (\cos 2x) + \log (\cos 3x) \\
\ $
As the problem statement said, we’ll now differentiate both sides using chain rule and formula$\dfrac{{d(\log x)}}{{dx}} = \dfrac{1}{x}$
$\
\log y = \log (\cos x) + \log (\cos 2x) + \log (\cos 3x) \\
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{1}{{\cos x}} \times ( - \sin x) + \dfrac{1}{{\cos 2x}} \times ( - 2\sin 2x) + \dfrac{1}{{\cos 3x}} \times ( - 3\sin 3x) \\
\Rightarrow \dfrac{{dy}}{{dx}} = y[ - \dfrac{{\sin x}}{{\cos x}} - 2\dfrac{{\sin 2x}}{{\cos 2x}} - 3\dfrac{{\sin 3x}}{{\cos 3x}}] \\
\Rightarrow \dfrac{{dy}}{{dx}} = y[ - \tan x - 2\tan 2x - 3\tan 3x] \\
\Rightarrow \dfrac{{dy}}{{dx}} = - \cos x.\cos 2x.\cos 3x.[\tan x + 2\tan 2x + 3\tan 3x] \\
\ $
Hence, the required differentiation of the given function is $ - \cos x.\cos 2x.\cos 3x.[\tan x + 2\tan 2x + 3\tan 3x]$ .
Note: We can also use the formula
$\dfrac{{d({y_1}.{y_2})}}{{dx}}= {y_1}\dfrac{{d({y_2})}}{{dx}} + {y_2}\dfrac{{d({y_1})}}{{dx}}$. But it’ll make the solution lengthy because we have three functions in the multiplication and we need to use the formula two times. In differential calculus, we often use this hack of taking logs to get rid of long solutions.
Let, $y = \cos x.\cos 2x.\cos 3x$ . Since their terms are in multiplication which we don’t want and we can get rid of this by taking logarithmic both sides because we know that $\log (m.n) = \log (m) + \log (n)$ .
$\
y = \cos x.\cos 2x.\cos 3x \\
\Rightarrow \log y = \log (\cos x) + \log (\cos 2x) + \log (\cos 3x) \\
\ $
As the problem statement said, we’ll now differentiate both sides using chain rule and formula$\dfrac{{d(\log x)}}{{dx}} = \dfrac{1}{x}$
$\
\log y = \log (\cos x) + \log (\cos 2x) + \log (\cos 3x) \\
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{1}{{\cos x}} \times ( - \sin x) + \dfrac{1}{{\cos 2x}} \times ( - 2\sin 2x) + \dfrac{1}{{\cos 3x}} \times ( - 3\sin 3x) \\
\Rightarrow \dfrac{{dy}}{{dx}} = y[ - \dfrac{{\sin x}}{{\cos x}} - 2\dfrac{{\sin 2x}}{{\cos 2x}} - 3\dfrac{{\sin 3x}}{{\cos 3x}}] \\
\Rightarrow \dfrac{{dy}}{{dx}} = y[ - \tan x - 2\tan 2x - 3\tan 3x] \\
\Rightarrow \dfrac{{dy}}{{dx}} = - \cos x.\cos 2x.\cos 3x.[\tan x + 2\tan 2x + 3\tan 3x] \\
\ $
Hence, the required differentiation of the given function is $ - \cos x.\cos 2x.\cos 3x.[\tan x + 2\tan 2x + 3\tan 3x]$ .
Note: We can also use the formula
$\dfrac{{d({y_1}.{y_2})}}{{dx}}= {y_1}\dfrac{{d({y_2})}}{{dx}} + {y_2}\dfrac{{d({y_1})}}{{dx}}$. But it’ll make the solution lengthy because we have three functions in the multiplication and we need to use the formula two times. In differential calculus, we often use this hack of taking logs to get rid of long solutions.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE