Answer
Verified
460.8k+ views
Hint: In this question remember to differentiate each function separately and use rules such as product rule which is given as; $\dfrac{{d\left( {pqr} \right)}}{{dx}} = qr\dfrac{{dp}}{{dx}} + rp\dfrac{{dq}}{{dx}} + qp\dfrac{{dr}}{{dx}}$ and chain rule i.e. $\dfrac{d}{{dx}}\left[ {f\left( {g\left( x \right)} \right)} \right] = f'\left( {g\left( x \right)} \right) \times g'\left( x \right)$(here f and g are two different function), using this information will help you to approach the solution.
Complete step-by-step answer:
According to the given information we have function ${x^{x\cos x}} + \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$
Let$y = {x^{x\cos x}} + \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$
And let $u = {x^{x\cos x}}$ and $v = \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$
Now y = u + v
Differentiating both side with respect to x we get
$\dfrac{{dy}}{{dx}} = \dfrac{{du}}{{dx}} + \dfrac{{dv}}{{dx}}$ (equation 1)
\[u = {x^{x\cos x}}\]
$ \Rightarrow $\[\log u = \log ({x^{x\cos x}})\]
$ \Rightarrow $\[\log u = x\cos x\log x\]
Differentiating both sides with respect to x, we obtain
\[\dfrac{{d\left( {\log u} \right)}}{{dx}} = \dfrac{{d\left( {x\cos x\log x} \right)}}{{dx}}\]
After applying the product rule which is given as; $\dfrac{{d\left( {pqr} \right)}}{{dx}} = qr\dfrac{{dp}}{{dx}} + rp\dfrac{{dq}}{{dx}} + qp\dfrac{{dr}}{{dx}}$
$\dfrac{1}{u}\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}(x).\cos x.\log x + x\dfrac{d}{{dx}}(\cos x).\log x + x\cos x.\dfrac{d}{{dx}}(\log x)$
We know that $\dfrac{{d\left( x \right)}}{{dx}} = 1$, $\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x$and $\dfrac{{d\left( {\log x} \right)}}{{dx}} = \dfrac{1}{x}$
$ \Rightarrow $$\dfrac{{du}}{{dx}} = u\left[ {1.\cos x.\log x + x.( - \sin x)\log x + x\cos x.\dfrac{1}{x}} \right]$
$ \Rightarrow $$\dfrac{{du}}{{dx}} = {x^{x\cos x}}(\cos x.\log x - x.\sin x.\log x + \cos x)$
$ \Rightarrow $$\dfrac{{du}}{{dx}} = {x^{x\cos x}}\left[ {\cos x(1 + \log x) - x\sin x\log x} \right]$(equation 2)
$v = \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$
Applying both sides, we get
$\log v = \log \left( {\dfrac{{{x^2} + 1}}{{{x^2} - 1}}} \right)$
Applying the quotient rule in the above equation i.e. $\log \left( {\dfrac{x}{y}} \right) = \log x - \log y$we get
$\log v = \log ({x^2} + 1) - \log ({x^2} - 1)$
Differentiating both sides with respect to x, we obtain
\[\dfrac{1}{v}\dfrac{{dv}}{{dx}} = \dfrac{{d\left( {\log ({x^2} + 1)} \right)}}{{dx}} - \dfrac{{d\left( {\log ({x^2} - 1)} \right)}}{{dx}}\]
By applying the chain rule i.e. $\dfrac{d}{{dx}}\left[ {f\left( {g\left( x \right)} \right)} \right] = f'\left( {g\left( x \right)} \right) \times g'\left( x \right)$(here f and g are two different function) in the above equation we get
\[\dfrac{1}{v}\dfrac{{dv}}{{dx}} = \left( {\dfrac{{d\left( {\log ({x^2} + 1)} \right)}}{{dx}}\dfrac{{d\left( {{x^2} + 1} \right)}}{{dx}}} \right) - \left( {\dfrac{{d\left( {\log ({x^2} - 1)} \right)}}{{dx}}\dfrac{{d\left( {{x^2} - 1} \right)}}{{dx}}} \right)\]
We know that $\dfrac{{d\left( {\log x} \right)}}{{dx}} = \dfrac{1}{x}$and $\dfrac{d}{{dx}}\left( {{x^2} \pm 1} \right) = 2x$
Therefore, $\dfrac{1}{v}\dfrac{{dv}}{{dx}} = \dfrac{{2x}}{{{x^2} + 1}} - \dfrac{{2x}}{{{x^2} - 1}}$
$\dfrac{{dv}}{{dx}} = v\left[ {\dfrac{{2x({x^2} - 1) - 2x({x^2} + 1)}}{{({x^2} + 1)({x^2} - 1)}}} \right]$
$\dfrac{{dv}}{{dx}} = \dfrac{{{x^2} + 1}}{{{x^2} - 1}} \times \left[ {\dfrac{{ - 4x}}{{({x^2} + 1)({x^2} - 1)}}} \right]$
$\dfrac{{dv}}{{dx}} = \dfrac{{ - 4x}}{{{{({x^2} - 1)}^2}}}$(equation 3)
Now substituting the values form (2) and (3) in the equation 1 er get
$\dfrac{{dy}}{{dx}} = {x^{x\cos x}}\left[ {\cos x(1 + \log x) - x\sin x\log x} \right] - \dfrac{{4x}}{{{{({x^2} - 1)}^2}}}$
Therefore, after differentiating this function ${x^{x\cos x}} + \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$with respect to x we get ${x^{x\cos x}}\left[ {\cos x(1 + \log x) - x\sin x\log x} \right] - \dfrac{{4x}}{{{{({x^2} - 1)}^2}}}$.
Note: In the above solution we came across the term “function” which can be explained as relation between the provided inputs and the outputs of the given inputs such that each input is directly related to the one output. The representation of a function is given by supposing if there is a function “f” that belongs from X to Y. Examples of functions are logarithmic functions, bijective functions, trigonometric functions, binary functions, etc.
Complete step-by-step answer:
According to the given information we have function ${x^{x\cos x}} + \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$
Let$y = {x^{x\cos x}} + \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$
And let $u = {x^{x\cos x}}$ and $v = \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$
Now y = u + v
Differentiating both side with respect to x we get
$\dfrac{{dy}}{{dx}} = \dfrac{{du}}{{dx}} + \dfrac{{dv}}{{dx}}$ (equation 1)
\[u = {x^{x\cos x}}\]
$ \Rightarrow $\[\log u = \log ({x^{x\cos x}})\]
$ \Rightarrow $\[\log u = x\cos x\log x\]
Differentiating both sides with respect to x, we obtain
\[\dfrac{{d\left( {\log u} \right)}}{{dx}} = \dfrac{{d\left( {x\cos x\log x} \right)}}{{dx}}\]
After applying the product rule which is given as; $\dfrac{{d\left( {pqr} \right)}}{{dx}} = qr\dfrac{{dp}}{{dx}} + rp\dfrac{{dq}}{{dx}} + qp\dfrac{{dr}}{{dx}}$
$\dfrac{1}{u}\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}(x).\cos x.\log x + x\dfrac{d}{{dx}}(\cos x).\log x + x\cos x.\dfrac{d}{{dx}}(\log x)$
We know that $\dfrac{{d\left( x \right)}}{{dx}} = 1$, $\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x$and $\dfrac{{d\left( {\log x} \right)}}{{dx}} = \dfrac{1}{x}$
$ \Rightarrow $$\dfrac{{du}}{{dx}} = u\left[ {1.\cos x.\log x + x.( - \sin x)\log x + x\cos x.\dfrac{1}{x}} \right]$
$ \Rightarrow $$\dfrac{{du}}{{dx}} = {x^{x\cos x}}(\cos x.\log x - x.\sin x.\log x + \cos x)$
$ \Rightarrow $$\dfrac{{du}}{{dx}} = {x^{x\cos x}}\left[ {\cos x(1 + \log x) - x\sin x\log x} \right]$(equation 2)
$v = \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$
Applying both sides, we get
$\log v = \log \left( {\dfrac{{{x^2} + 1}}{{{x^2} - 1}}} \right)$
Applying the quotient rule in the above equation i.e. $\log \left( {\dfrac{x}{y}} \right) = \log x - \log y$we get
$\log v = \log ({x^2} + 1) - \log ({x^2} - 1)$
Differentiating both sides with respect to x, we obtain
\[\dfrac{1}{v}\dfrac{{dv}}{{dx}} = \dfrac{{d\left( {\log ({x^2} + 1)} \right)}}{{dx}} - \dfrac{{d\left( {\log ({x^2} - 1)} \right)}}{{dx}}\]
By applying the chain rule i.e. $\dfrac{d}{{dx}}\left[ {f\left( {g\left( x \right)} \right)} \right] = f'\left( {g\left( x \right)} \right) \times g'\left( x \right)$(here f and g are two different function) in the above equation we get
\[\dfrac{1}{v}\dfrac{{dv}}{{dx}} = \left( {\dfrac{{d\left( {\log ({x^2} + 1)} \right)}}{{dx}}\dfrac{{d\left( {{x^2} + 1} \right)}}{{dx}}} \right) - \left( {\dfrac{{d\left( {\log ({x^2} - 1)} \right)}}{{dx}}\dfrac{{d\left( {{x^2} - 1} \right)}}{{dx}}} \right)\]
We know that $\dfrac{{d\left( {\log x} \right)}}{{dx}} = \dfrac{1}{x}$and $\dfrac{d}{{dx}}\left( {{x^2} \pm 1} \right) = 2x$
Therefore, $\dfrac{1}{v}\dfrac{{dv}}{{dx}} = \dfrac{{2x}}{{{x^2} + 1}} - \dfrac{{2x}}{{{x^2} - 1}}$
$\dfrac{{dv}}{{dx}} = v\left[ {\dfrac{{2x({x^2} - 1) - 2x({x^2} + 1)}}{{({x^2} + 1)({x^2} - 1)}}} \right]$
$\dfrac{{dv}}{{dx}} = \dfrac{{{x^2} + 1}}{{{x^2} - 1}} \times \left[ {\dfrac{{ - 4x}}{{({x^2} + 1)({x^2} - 1)}}} \right]$
$\dfrac{{dv}}{{dx}} = \dfrac{{ - 4x}}{{{{({x^2} - 1)}^2}}}$(equation 3)
Now substituting the values form (2) and (3) in the equation 1 er get
$\dfrac{{dy}}{{dx}} = {x^{x\cos x}}\left[ {\cos x(1 + \log x) - x\sin x\log x} \right] - \dfrac{{4x}}{{{{({x^2} - 1)}^2}}}$
Therefore, after differentiating this function ${x^{x\cos x}} + \dfrac{{{x^2} + 1}}{{{x^2} - 1}}$with respect to x we get ${x^{x\cos x}}\left[ {\cos x(1 + \log x) - x\sin x\log x} \right] - \dfrac{{4x}}{{{{({x^2} - 1)}^2}}}$.
Note: In the above solution we came across the term “function” which can be explained as relation between the provided inputs and the outputs of the given inputs such that each input is directly related to the one output. The representation of a function is given by supposing if there is a function “f” that belongs from X to Y. Examples of functions are logarithmic functions, bijective functions, trigonometric functions, binary functions, etc.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE