Answer
Verified
496.8k+ views
Hint: The function to be differentiated is a product of two functions of x. Hence, use product rules to differentiate it and then simplify the terms.
Complete step-by-step answer:
We observe that the term to be differentiated is the product of two functions \[{e^{3x}}\] and sin(4x).
We know that to differentiate these terms, we must use the product rule of differentiation.
The product rule of differential calculus states that the differentiation of a product of two functions is the sum of products of one function and the differentiation of the other function and it is given as
follows:
\[(uv)' = uv' + u'v.........(1)\]
where u and v are two functions of x and u’ and v’ are differentiation of u and v with respect to x
respectively.
It is given that,
\[y = {e^{3x}}\sin 4x........(2)\]
We differentiate both sides of the equation (2) to get an expression for \[\dfrac{{dy}}{{dx}}\].
$\Rightarrow$ \[\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {{e^{3x}}\sin 4x} \right)..........(3)\]
Using the formula in equation (1) in equation (3), we get the following:
$\Rightarrow$ \[\dfrac{{dy}}{{dx}} = {e^{3x}}\dfrac{d}{{dx}}\left( {\sin 4x} \right) + \sin 4x\dfrac{d}{{dx}}\left({{e^{3x}}} \right)..........(3)\]
We know that differentiation of sin(ax) is a.cos(ax) and the differentiation of \[{e^{ax}}\] is
\[a{e^{ax}}\]. Using these formulas to simplify equation (3), we get:
$\Rightarrow$ \[\dfrac{{dy}}{{dx}} = {e^{3x}}.4\cos 4x + \sin 4x.3{e^{3x}}\]
Taking \[{e^{3x}}\] as a common term, we get the final expression as:
$\Rightarrow$ \[\dfrac{{dy}}{{dx}} = {e^{3x}}(4\cos 4x + 3\sin 4x)\]
Hence, the answer is \[{e^{3x}}(4\cos 4x + 3\sin 4x)\].
Note: You can easily forget the constant term when differentiating sin(4x) and \[{e^{3x}}\] and the you might get the final answer as \[{e^{3x}}(\cos 4x + \sin 4x)\], which is wrong. This question is an example for application of the product rule of differentiation.
Complete step-by-step answer:
We observe that the term to be differentiated is the product of two functions \[{e^{3x}}\] and sin(4x).
We know that to differentiate these terms, we must use the product rule of differentiation.
The product rule of differential calculus states that the differentiation of a product of two functions is the sum of products of one function and the differentiation of the other function and it is given as
follows:
\[(uv)' = uv' + u'v.........(1)\]
where u and v are two functions of x and u’ and v’ are differentiation of u and v with respect to x
respectively.
It is given that,
\[y = {e^{3x}}\sin 4x........(2)\]
We differentiate both sides of the equation (2) to get an expression for \[\dfrac{{dy}}{{dx}}\].
$\Rightarrow$ \[\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {{e^{3x}}\sin 4x} \right)..........(3)\]
Using the formula in equation (1) in equation (3), we get the following:
$\Rightarrow$ \[\dfrac{{dy}}{{dx}} = {e^{3x}}\dfrac{d}{{dx}}\left( {\sin 4x} \right) + \sin 4x\dfrac{d}{{dx}}\left({{e^{3x}}} \right)..........(3)\]
We know that differentiation of sin(ax) is a.cos(ax) and the differentiation of \[{e^{ax}}\] is
\[a{e^{ax}}\]. Using these formulas to simplify equation (3), we get:
$\Rightarrow$ \[\dfrac{{dy}}{{dx}} = {e^{3x}}.4\cos 4x + \sin 4x.3{e^{3x}}\]
Taking \[{e^{3x}}\] as a common term, we get the final expression as:
$\Rightarrow$ \[\dfrac{{dy}}{{dx}} = {e^{3x}}(4\cos 4x + 3\sin 4x)\]
Hence, the answer is \[{e^{3x}}(4\cos 4x + 3\sin 4x)\].
Note: You can easily forget the constant term when differentiating sin(4x) and \[{e^{3x}}\] and the you might get the final answer as \[{e^{3x}}(\cos 4x + \sin 4x)\], which is wrong. This question is an example for application of the product rule of differentiation.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE