Answer
Verified
430.5k+ views
Hint: (1) Find the derivative of $'y'$ firstly then find the derivative of ${{\left( \sin x \right)}^{\ln x}}$
(2) Try to shift $\ln x$ exponent and solve it by taking.
Natural $\log $ on both sides using properties of logarithms.
E.g. $\ln {{x}^{a}}=a\ln \left( x \right)$
Complete step by step solution: We know that, $y={{\left( \sin x \right)}^{\ln x}}$
So, here we can first find the derivative of $'y'$ than after that derivative of ${{\left( \sin x \right)}^{\ln x}}$
$y={{\left( \sin x \right)}^{\ln x}}$
Taking $\log $ on both sides by using the property of logarithm,
Therefore,
$\ln y=\ln {{\left( \sin x \right)}^{\ln x}}$
$\ln y=\ln x.\ln \left( \sin x \right)...(i)$
Here ${{\left( \sin x \right)}^{\ln x}}$ converted into $\ln x.\left( \sin x \right)$ by the property of logarithm.
Now,
We will derive both sides, for the left side we will have to derivate of $\ln y=\dfrac{1}{y}$
But we can’t simply say that derivative of $y$ is $1$ (using change rule) Rather we say that it is $\dfrac{dy}{dx}$
So, the left hand side of equation will be.
$\dfrac{1}{y}.\dfrac{dy}{dx}$
Now, taking derivative on right side of the equation $(i)$
Using the product and chain rule we will get,
$\dfrac{1}{y}.\dfrac{dy}{dx}=\left( \ln \left( \sin x \right).\dfrac{1}{2} \right)+\left( \ln x.\dfrac{1}{\sin x}.\cos x \right)$
$\dfrac{1}{y}.\dfrac{dy}{dx}=\dfrac{\ln \left( \sin x \right)}{x}+\dfrac{\ln x.\cos x}{\sin x}$
Multiplying above equation on both sides by $'y'$
Therefore,
$\dfrac{1}{y}.y\dfrac{dy}{dx}=y\left( \dfrac{\ln \left( \sin x \right)}{x}+\dfrac{\ln x.\cos x}{\sin x} \right)$
Here, $y$ in multiplying and division get canceled.
$\dfrac{dy}{dx}=y\left( \dfrac{\ln \left( \sin x \right)}{x}+\dfrac{\ln \cos x}{\sin x} \right)$
Hence, to get our answer in terms of $'x'$ replace $'y'$ by $\sin {{x}^{\ln x}}$ from the original function.
Our final answer will be
$\dfrac{dy}{dx}=\sin {{\left( x \right)}^{\ln x}}\left( \dfrac{\ln \left( \sin x \right)}{x}+\dfrac{\ln x.\cos x}{\sin x} \right)$
Additional Information:
(1) The chain rule tells us how to find the derivative of a composite function.
In this way we can apply chain rule.
$\dfrac{d}{dx}\left[ f(g(x)) \right]=f'\left( g\left( x \right) \right)g'\left( x \right)$
For example: $\cos \left( {{x}^{2}} \right)$
$f(x)=\cos \left( x \right)$ and $g\left( x \right)={{x}^{2}}$ then $\cos \left( {{x}^{2}} \right)=f\left( g\left( x \right) \right)$
(2) Derivative of $\sin x$ is $\cos x$ but here for the exponent component we have to use the property of logarithm.
Note:
(1) Firstly find the derivative of $'y'$ and then of the ${{\left( \sin x \right)}^{\ln x}}$
(2) Shift $\ln x$ exponent by using the property of logarithm.
(3) Use only product and chain rules.
(4) At last replace $y$ by $\sin {{x}^{\ln x}}$ from the original function.
(2) Try to shift $\ln x$ exponent and solve it by taking.
Natural $\log $ on both sides using properties of logarithms.
E.g. $\ln {{x}^{a}}=a\ln \left( x \right)$
Complete step by step solution: We know that, $y={{\left( \sin x \right)}^{\ln x}}$
So, here we can first find the derivative of $'y'$ than after that derivative of ${{\left( \sin x \right)}^{\ln x}}$
$y={{\left( \sin x \right)}^{\ln x}}$
Taking $\log $ on both sides by using the property of logarithm,
Therefore,
$\ln y=\ln {{\left( \sin x \right)}^{\ln x}}$
$\ln y=\ln x.\ln \left( \sin x \right)...(i)$
Here ${{\left( \sin x \right)}^{\ln x}}$ converted into $\ln x.\left( \sin x \right)$ by the property of logarithm.
Now,
We will derive both sides, for the left side we will have to derivate of $\ln y=\dfrac{1}{y}$
But we can’t simply say that derivative of $y$ is $1$ (using change rule) Rather we say that it is $\dfrac{dy}{dx}$
So, the left hand side of equation will be.
$\dfrac{1}{y}.\dfrac{dy}{dx}$
Now, taking derivative on right side of the equation $(i)$
Using the product and chain rule we will get,
$\dfrac{1}{y}.\dfrac{dy}{dx}=\left( \ln \left( \sin x \right).\dfrac{1}{2} \right)+\left( \ln x.\dfrac{1}{\sin x}.\cos x \right)$
$\dfrac{1}{y}.\dfrac{dy}{dx}=\dfrac{\ln \left( \sin x \right)}{x}+\dfrac{\ln x.\cos x}{\sin x}$
Multiplying above equation on both sides by $'y'$
Therefore,
$\dfrac{1}{y}.y\dfrac{dy}{dx}=y\left( \dfrac{\ln \left( \sin x \right)}{x}+\dfrac{\ln x.\cos x}{\sin x} \right)$
Here, $y$ in multiplying and division get canceled.
$\dfrac{dy}{dx}=y\left( \dfrac{\ln \left( \sin x \right)}{x}+\dfrac{\ln \cos x}{\sin x} \right)$
Hence, to get our answer in terms of $'x'$ replace $'y'$ by $\sin {{x}^{\ln x}}$ from the original function.
Our final answer will be
$\dfrac{dy}{dx}=\sin {{\left( x \right)}^{\ln x}}\left( \dfrac{\ln \left( \sin x \right)}{x}+\dfrac{\ln x.\cos x}{\sin x} \right)$
Additional Information:
(1) The chain rule tells us how to find the derivative of a composite function.
In this way we can apply chain rule.
$\dfrac{d}{dx}\left[ f(g(x)) \right]=f'\left( g\left( x \right) \right)g'\left( x \right)$
For example: $\cos \left( {{x}^{2}} \right)$
$f(x)=\cos \left( x \right)$ and $g\left( x \right)={{x}^{2}}$ then $\cos \left( {{x}^{2}} \right)=f\left( g\left( x \right) \right)$
(2) Derivative of $\sin x$ is $\cos x$ but here for the exponent component we have to use the property of logarithm.
Note:
(1) Firstly find the derivative of $'y'$ and then of the ${{\left( \sin x \right)}^{\ln x}}$
(2) Shift $\ln x$ exponent by using the property of logarithm.
(3) Use only product and chain rules.
(4) At last replace $y$ by $\sin {{x}^{\ln x}}$ from the original function.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE