Answer
Verified
480.6k+ views
Hint: Here, we will proceed by expressing the coefficient of viscosity in terms quantities whose dimensional formulas are known which can be done by using Newton’s law of viscosity.
Step By Step Answer:
Formula Used- ${\text{F}} = \eta \dfrac{{d{\text{u}}}}{{dy}}$.
According to Newton’s law of viscosity
Force of friction ${\text{F}} = \eta \dfrac{{d{\text{u}}}}{{dy}}$ where $\eta $ denotes the coefficient of viscosity, du denotes the change in the velocity of the fluid layers separated by a distance dy (measured in the vertical direction)
\[
\Rightarrow \eta = \dfrac{{\text{F}}}{{\left( {\dfrac{{d{\text{u}}}}{{dy}}} \right)}} \\
\Rightarrow \eta = {\text{F}}\left( {\dfrac{{dy}}{{d{\text{u}}}}} \right){\text{ }} \to {\text{(1)}} \\
\]
As we know that F represents a force and the dimension of force is \[\left[ {{\text{ML}}{{\text{T}}^{ - 2}}} \right]\]. Also, dy represents the length and the dimension of length is [L]. Also, du represents the change in the velocity and the dimension of velocity is \[\left[ {{\text{L}}{{\text{T}}^{ - 1}}} \right]\].
Using the formula given by equation (1), the dimension of the coefficient of viscosity is given by
Dimensional formula of coefficient of viscosity =
(Dimensional formula of F)($\dfrac{{{\text{Dimensional formula of dy}}}}{{{\text{Dimensional formula of du}}}}$)
$ \Rightarrow $ Dimensional formula of coefficient of viscosity =
(Dimensional formula of force)($\dfrac{{{\text{Dimensional formula of length}}}}{{{\text{Dimensional formula of velocity}}}}$)
$ \Rightarrow $ Dimensional formula of coefficient of viscosity = \[\left[ {{\text{ML}}{{\text{T}}^{ - 2}}} \right]\dfrac{{\left[ {\text{L}} \right]}}{{\left[ {{\text{L}}{{\text{T}}^{ - 1}}} \right]}} = \left[ {{\text{ML}}{{\text{T}}^{ - 2}}} \right]\left[ {\text{L}} \right]\left[ {{{\text{L}}^{ - 1}}{{\text{T}}^1}} \right]\]
$ \Rightarrow $ Dimensional formula of coefficient of viscosity = \[\left[ {{\text{ML}}{{\text{T}}^{ - 2}}{\text{L}}{{\text{L}}^{ - 1}}{\text{T}}} \right] = \left[ {{\text{M}}{{\text{L}}^{1 + 1 - 1}}{{\text{T}}^{ - 2 + 1}}} \right] = \left[ {{\text{M}}{{\text{L}}^1}{{\text{T}}^{ - 1}}} \right]\]
$ \Rightarrow $ Dimensional formula of coefficient of viscosity = \[\left[ {{\text{ML}}{{\text{T}}^{ - 1}}} \right]\]
Therefore, option A is correct.
Note: Coefficient of viscosity refers to the measurement of the fluid's viscosity, equal to the force per unit area required to maintain a velocity difference of one-unit distance per unit time between two parallel fluid planes in the flow direction divided by one-unit distance. They are usually expressed in poise or centipoise.
Step By Step Answer:
Formula Used- ${\text{F}} = \eta \dfrac{{d{\text{u}}}}{{dy}}$.
According to Newton’s law of viscosity
Force of friction ${\text{F}} = \eta \dfrac{{d{\text{u}}}}{{dy}}$ where $\eta $ denotes the coefficient of viscosity, du denotes the change in the velocity of the fluid layers separated by a distance dy (measured in the vertical direction)
\[
\Rightarrow \eta = \dfrac{{\text{F}}}{{\left( {\dfrac{{d{\text{u}}}}{{dy}}} \right)}} \\
\Rightarrow \eta = {\text{F}}\left( {\dfrac{{dy}}{{d{\text{u}}}}} \right){\text{ }} \to {\text{(1)}} \\
\]
As we know that F represents a force and the dimension of force is \[\left[ {{\text{ML}}{{\text{T}}^{ - 2}}} \right]\]. Also, dy represents the length and the dimension of length is [L]. Also, du represents the change in the velocity and the dimension of velocity is \[\left[ {{\text{L}}{{\text{T}}^{ - 1}}} \right]\].
Using the formula given by equation (1), the dimension of the coefficient of viscosity is given by
Dimensional formula of coefficient of viscosity =
(Dimensional formula of F)($\dfrac{{{\text{Dimensional formula of dy}}}}{{{\text{Dimensional formula of du}}}}$)
$ \Rightarrow $ Dimensional formula of coefficient of viscosity =
(Dimensional formula of force)($\dfrac{{{\text{Dimensional formula of length}}}}{{{\text{Dimensional formula of velocity}}}}$)
$ \Rightarrow $ Dimensional formula of coefficient of viscosity = \[\left[ {{\text{ML}}{{\text{T}}^{ - 2}}} \right]\dfrac{{\left[ {\text{L}} \right]}}{{\left[ {{\text{L}}{{\text{T}}^{ - 1}}} \right]}} = \left[ {{\text{ML}}{{\text{T}}^{ - 2}}} \right]\left[ {\text{L}} \right]\left[ {{{\text{L}}^{ - 1}}{{\text{T}}^1}} \right]\]
$ \Rightarrow $ Dimensional formula of coefficient of viscosity = \[\left[ {{\text{ML}}{{\text{T}}^{ - 2}}{\text{L}}{{\text{L}}^{ - 1}}{\text{T}}} \right] = \left[ {{\text{M}}{{\text{L}}^{1 + 1 - 1}}{{\text{T}}^{ - 2 + 1}}} \right] = \left[ {{\text{M}}{{\text{L}}^1}{{\text{T}}^{ - 1}}} \right]\]
$ \Rightarrow $ Dimensional formula of coefficient of viscosity = \[\left[ {{\text{ML}}{{\text{T}}^{ - 1}}} \right]\]
Therefore, option A is correct.
Note: Coefficient of viscosity refers to the measurement of the fluid's viscosity, equal to the force per unit area required to maintain a velocity difference of one-unit distance per unit time between two parallel fluid planes in the flow direction divided by one-unit distance. They are usually expressed in poise or centipoise.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE