Answer
Verified
474.3k+ views
Hint: You can always derive dimension by using formula. Split formula until end. Use basic algebra. Use the definition of Newton’s law of viscous force. Coefficient of viscosity will give dynamic viscosity.
Complete step by step solutions:
Take an example of a pipe through which water is coming out. If you will observe then velocity at the near surface of the pipe is less and as we move away from the surface the velocity is maximised. The velocity at centre is maximum. So we can assume that there must be a layer which is acting there forces on each other.
Newton’s law of viscous law:
According to this law, force exerted on a faster layer by an adjacent slower layer is proportional to 1) area of layer and 2) velocity gradient, perpendicular to direction of flow and it is given by,
$\begin{align}
& F\propto A.\dfrac{dv}{dy} \\
& F=-\eta .A.\dfrac{dv}{dy} \\
\end{align}$
Where, $\eta $= dynamic viscosity
v = velocity of fluid
A = Area of layer
$\begin{align}
& \eta =\dfrac{F}{A.\dfrac{dv}{dy}} \\
& \\
\end{align}$
Dimension of force is [$ML{{T}^{-2}}$]
Dimension of area (A) is [${{L}^{2}}$]
Dimension of v is [$L{{T}^{-1}}$]
Dimension of y is [${{L}^{-1}}$]
Therefore dimension of equation of $\eta $ is,
[$\eta $] = $\dfrac{[ML{{T}^{-2}}]}{[{{L}^{2}}.L{{T}^{-1}}.{{L}^{-1}}]}$
L gets canceled in the denominator and the inverse of T gets shifted in the numerator. Final dimension is,
[$\eta $] = $[M{{L}^{-1}}{{T}^{-1}}]$
Dimension of dynamic viscosity is $[M{{L}^{-1}}{{T}^{-1}}]$.
Option c) is correct.
Note: Use examples to keep concepts in mind. Like in this particular problem you can remember the pipe through which water is flowing as an example to understand the concept of dynamic viscosity. Just remember one thing either formula or definition, from this you can easily derive dimension.
Complete step by step solutions:
Take an example of a pipe through which water is coming out. If you will observe then velocity at the near surface of the pipe is less and as we move away from the surface the velocity is maximised. The velocity at centre is maximum. So we can assume that there must be a layer which is acting there forces on each other.
Newton’s law of viscous law:
According to this law, force exerted on a faster layer by an adjacent slower layer is proportional to 1) area of layer and 2) velocity gradient, perpendicular to direction of flow and it is given by,
$\begin{align}
& F\propto A.\dfrac{dv}{dy} \\
& F=-\eta .A.\dfrac{dv}{dy} \\
\end{align}$
Where, $\eta $= dynamic viscosity
v = velocity of fluid
A = Area of layer
$\begin{align}
& \eta =\dfrac{F}{A.\dfrac{dv}{dy}} \\
& \\
\end{align}$
Dimension of force is [$ML{{T}^{-2}}$]
Dimension of area (A) is [${{L}^{2}}$]
Dimension of v is [$L{{T}^{-1}}$]
Dimension of y is [${{L}^{-1}}$]
Therefore dimension of equation of $\eta $ is,
[$\eta $] = $\dfrac{[ML{{T}^{-2}}]}{[{{L}^{2}}.L{{T}^{-1}}.{{L}^{-1}}]}$
L gets canceled in the denominator and the inverse of T gets shifted in the numerator. Final dimension is,
[$\eta $] = $[M{{L}^{-1}}{{T}^{-1}}]$
Dimension of dynamic viscosity is $[M{{L}^{-1}}{{T}^{-1}}]$.
Option c) is correct.
Note: Use examples to keep concepts in mind. Like in this particular problem you can remember the pipe through which water is flowing as an example to understand the concept of dynamic viscosity. Just remember one thing either formula or definition, from this you can easily derive dimension.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE