![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Dimensional formula of universal gravitational constant G is-
$
\left( a \right){M^{ - 1}}{L^3}{T^{ - 2}} \\
\left( b \right){M^{ - 1}}{L^2}{T^{ - 2}} \\
\left( c \right){M^{ - 2}}{L^3}{T^{ - 2}} \\
\left( d \right){M^{ - 2}}{L^2}{T^{ - 2}} \\
$
Answer
503.7k+ views
Hint: In this question use the dimensional formula of force, distance and mass, as gravitational constant G can be expressed in terms of Force, distance between two bodies and the mass of the bodies.
Complete step-by-step answer:
As we know force between two masses (m) and (M) is
$F = \dfrac{{G\left( {m.M} \right)}}{{{r^2}}}$, where G is called a gravitational constant and r is the distance between them.
So, the formula of universal gravitational constant G is
$ \Rightarrow G = \dfrac{{F.{r^2}}}{{m.M}}$
Now as we know force is the product of mass (M) and acceleration (a)
Therefore, F = (M. a).
Now as we know that the dimension of mass (M) is $M^1$.
And we know the S.I unit of acceleration (a) is $\dfrac{m}{s^{2}}$.
The dimension of meter is $L^1$ and the dimension of second (s) is $T^1$.
So the dimension of acceleration is $L^1 T ^{-2}$.
Therefore, the dimension of force (F) is the product of mass and acceleration i.e $M^1$ $L^1 T ^{-2}$ =${M^1}{L^1}{T^{ - 2}}$.
And we all know distance is measured in meters so the dimension of r is $L^1$.
Therefore, the dimension of G is
$ \Rightarrow G = \dfrac{{\left[ {{M^1}{L^1}{T^{ - 2}}} \right]\left[ {{L^2}} \right]}}{{\left[ {{M^2}} \right]}}$
Now on simplifying we have,
$G = \left[ {{M^{ - 1}}{L^3}{T^{ - 2}}} \right]$
So this is the required dimension of universal gravitational constant (G).
Hence option (A) is correct.
Note – Dimension formula is the expression for the unit of a physical quantity in terms of the fundamental quantities. The fundamental quantities are mass (M), Length (L) and time (T). A dimensional formula is expressed in terms of power of M, L and T. By observing the dimensional formula $G = \left[ {{M^{ - 1}}{L^3}{T^{ - 2}}} \right]$ we can say that universal gravitational constant has negative dimensions of mass.
Complete step-by-step answer:
As we know force between two masses (m) and (M) is
$F = \dfrac{{G\left( {m.M} \right)}}{{{r^2}}}$, where G is called a gravitational constant and r is the distance between them.
So, the formula of universal gravitational constant G is
$ \Rightarrow G = \dfrac{{F.{r^2}}}{{m.M}}$
Now as we know force is the product of mass (M) and acceleration (a)
Therefore, F = (M. a).
Now as we know that the dimension of mass (M) is $M^1$.
And we know the S.I unit of acceleration (a) is $\dfrac{m}{s^{2}}$.
The dimension of meter is $L^1$ and the dimension of second (s) is $T^1$.
So the dimension of acceleration is $L^1 T ^{-2}$.
Therefore, the dimension of force (F) is the product of mass and acceleration i.e $M^1$ $L^1 T ^{-2}$ =${M^1}{L^1}{T^{ - 2}}$.
And we all know distance is measured in meters so the dimension of r is $L^1$.
Therefore, the dimension of G is
$ \Rightarrow G = \dfrac{{\left[ {{M^1}{L^1}{T^{ - 2}}} \right]\left[ {{L^2}} \right]}}{{\left[ {{M^2}} \right]}}$
Now on simplifying we have,
$G = \left[ {{M^{ - 1}}{L^3}{T^{ - 2}}} \right]$
So this is the required dimension of universal gravitational constant (G).
Hence option (A) is correct.
Note – Dimension formula is the expression for the unit of a physical quantity in terms of the fundamental quantities. The fundamental quantities are mass (M), Length (L) and time (T). A dimensional formula is expressed in terms of power of M, L and T. By observing the dimensional formula $G = \left[ {{M^{ - 1}}{L^3}{T^{ - 2}}} \right]$ we can say that universal gravitational constant has negative dimensions of mass.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the value of x if the mode of the following data class 11 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How many valence electrons does nitrogen have class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)