
Dipole moment is smaller than:
(A)
(B)
(C)
(D)
Answer
142.8k+ views
Hint: The measure of charge distribution within a molecule is known as the Dipole moment of the molecule. The dipole moment is seen in any system where there is a separation of charges.
Complete step by step solution:
-The measure of the polarity of a chemical bond between two atoms in a molecule is known as bond dipole moment.
-Bond dipole moment occurs due to the difference in the electronegativities of the chemically bonded atoms within the molecule. The higher the electronegativity difference between the two atoms, the more will be the ionic character to the bond and vice versa.
-Dipole moment has both magnitudes as well as direction, hence it is a vector quantity.
-The dipole moment is the mathematical product of the total amount of positive charge or negative charge and the distance between the centre of the charge distribution. The dipole moment is represented by a symbol .
where is the dipole moment
q is the separated charge
r is the distance between them
-We will start predicting the answer to this question by comparing the electronegativity differences between the atoms of the compounds given in the question .
(i) The electronegativity difference between N-H in and N-F in is calculated as-
Fluorine (3.9) - Nitrogen (3.0) = 0.9
Nitrogen (3.0) – Hydrogen (2.2) = 0.8
(ii) The electronegativity difference between C-O in and N-F in is calculated as-
Fluorine (3.9) - Nitrogen (3.0) = 0.9
Oxygen (3.4) - Carbon (2.5) = 0.9
(iii)The electronegativity difference between B-F in and N-F in is calculated as-
Fluorine (3.9) - Nitrogen (3.0) = 0.9
Fluorine (3.9) - Boron (2.4) = 1.86
(iv) The electronegativity difference between C-Cl in and N-F in is calculated as-
Fluorine (3.9) - Nitrogen (3.0) = 0.9
Chlorine (3.1) - Carbon (2.5) = 0.6
From the above values, we can easily eliminate the options (C) and (D) as they have a larger difference in their electronegativity values.
-Now considering atomic sizes for option A and B,
Fluorine and Hydrogen have comparable atomic sizes (Fluorine 42 pm and Hydrogen at 53 pm), whereas Oxygen and Fluorine have a larger difference (Fluorine 42 pm and Oxygen 60pm). Moreover, the bond distance for N-H and the N-F is 100 pm and 137pm respectively.
-Considering the above parameters, we expect the dipole moment to be similar or slightly higher than , but we observed the dipole moment value for is 1.46 Debye and for as 0.24. This difference is so because we haven’t taken into consideration the molecular shape.
-Dipole moment is a vector quantity, is directional. Ideally, the net dipole moment is the sum of all the individual bond moments, but for complex molecules like and , the net dipole moment cannot be directly calculated by the vector addition of the bond moments. Apart from the molecular shape, the contribution of the lone pair to the net dipole moment must also be considered.

So, the correct answer is option (A).
Note: Nitrogen fluoride is colourless, inorganic, and nonflammable gas. It is an extremely strong greenhouse gas. Nitrogen fluoride is used in the plasma etching of silicon wafers and also used in hydrogen fluoride and deuterium fluoride lasers. It is a greenhouse gas with a glocal warming potential greater than carbon dioxide.
Complete step by step solution:
-The measure of the polarity of a chemical bond between two atoms in a molecule is known as bond dipole moment.
-Bond dipole moment occurs due to the difference in the electronegativities of the chemically bonded atoms within the molecule. The higher the electronegativity difference between the two atoms, the more will be the ionic character to the bond and vice versa.
-Dipole moment has both magnitudes as well as direction, hence it is a vector quantity.
-The dipole moment is the mathematical product of the total amount of positive charge or negative charge and the distance between the centre of the charge distribution. The dipole moment is represented by a symbol
where
q is the separated charge
r is the distance between them
-We will start predicting the answer to this question by comparing the electronegativity differences between the atoms of the compounds given in the question
(i) The electronegativity difference between N-H in
Fluorine (3.9) - Nitrogen (3.0) = 0.9
Nitrogen (3.0) – Hydrogen (2.2) = 0.8
(ii) The electronegativity difference between C-O in
Fluorine (3.9) - Nitrogen (3.0) = 0.9
Oxygen (3.4) - Carbon (2.5) = 0.9
(iii)The electronegativity difference between B-F in
Fluorine (3.9) - Nitrogen (3.0) = 0.9
Fluorine (3.9) - Boron (2.4) = 1.86
(iv) The electronegativity difference between C-Cl in
Fluorine (3.9) - Nitrogen (3.0) = 0.9
Chlorine (3.1) - Carbon (2.5) = 0.6
From the above values, we can easily eliminate the options (C) and (D) as they have a larger difference in their electronegativity values.
-Now considering atomic sizes for option A and B,
Fluorine and Hydrogen have comparable atomic sizes (Fluorine 42 pm and Hydrogen at 53 pm), whereas Oxygen and Fluorine have a larger difference (Fluorine 42 pm and Oxygen 60pm). Moreover, the bond distance for N-H and the N-F is 100 pm and 137pm respectively.
-Considering the above parameters, we expect the dipole moment
-Dipole moment is a vector quantity, is directional. Ideally, the net dipole moment is the sum of all the individual bond moments, but for complex molecules like

So, the correct answer is option (A).
Note: Nitrogen fluoride is colourless, inorganic, and nonflammable gas. It is an extremely strong greenhouse gas. Nitrogen fluoride is used in the plasma etching of silicon wafers and also used in hydrogen fluoride and deuterium fluoride lasers. It is a greenhouse gas with a glocal warming potential greater than carbon dioxide.
Latest Vedantu courses for you
Grade 10 | MAHARASHTRABOARD | SCHOOL | English
Vedantu 10 Maharashtra Pro Lite (2025-26)
School Full course for MAHARASHTRABOARD students
₹33,300 per year
EMI starts from ₹2,775 per month
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Types of Solutions

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Hydrocarbons Class 11 Notes: CBSE Chemistry Chapter 9

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry
