Answer
Verified
484.5k+ views
- Hint: Apply Shell’s theorem which states that a spherically symmetric object affects other objects gravitationally as if all of its mass were concentrated at its centre. Different points, above and inside earth are considered and variation in g is deduced.
Complete step-by-step solution -
Earth can be considered as a uniform sphere of mass M and radius R. Where the Gravitational constant is given as G. We know that on the surface of Earth acceleration due to gravity is
$g=\dfrac{GM}{{{R}^{2}}}$
We now apply shell’s theorem. Shell’s theorem states that a spherically symmetric object affects other objects gravitationally as if all of its mass were concentrated at its centre. Consider Earth as the shell.
Part(a) Altitude
Let the point be taken at a height h above the earth’s surface. Applying the shell’s theorem for the figure we can write the acceleration due to gravity at that point as
$g'=\dfrac{GM}{{{r}^{2}}}=\dfrac{GM}{{{(R+h)}^{2}}}$
The relation clearly shows that with an increase in height the acceleration due to gravity decreases.
Part(b) Depth
Let the point be taken at a depth d below the earth’s surface. Applying the shell’s theorem for the figure we can observe that only the mass which lies inside the sphere of radius R-d is responsible for the acceleration due to gravity at that point.
\[\begin{align}
& \dfrac{\text{Mass of sphere inside}}{\text{Mass of complete sphere }}=\left[ \dfrac{M'}{M} \right]={{\left[ \dfrac{R-d}{R} \right]}^{3}} \\
& g'=\dfrac{GM'}{{{r}^{2}}}=\dfrac{GM}{{{(R-d)}^{2}}}{{\left[ \dfrac{R-d}{R} \right]}^{3}}=\dfrac{GM}{{{R}^{2}}}\left[ \dfrac{R-d}{R} \right] \\
\end{align}\]
The relation clearly shows that with an increase in depth the acceleration due to gravity decreases.
Note: Since the force due to gravity is a vector, it is possible to prove the shell’s theorem. Additionally, the theorem also states that at any point inside a hollow shell, force due to gravity becomes zero.
Complete step-by-step solution -
Earth can be considered as a uniform sphere of mass M and radius R. Where the Gravitational constant is given as G. We know that on the surface of Earth acceleration due to gravity is
$g=\dfrac{GM}{{{R}^{2}}}$
We now apply shell’s theorem. Shell’s theorem states that a spherically symmetric object affects other objects gravitationally as if all of its mass were concentrated at its centre. Consider Earth as the shell.
Part(a) Altitude
Let the point be taken at a height h above the earth’s surface. Applying the shell’s theorem for the figure we can write the acceleration due to gravity at that point as
$g'=\dfrac{GM}{{{r}^{2}}}=\dfrac{GM}{{{(R+h)}^{2}}}$
The relation clearly shows that with an increase in height the acceleration due to gravity decreases.
Part(b) Depth
Let the point be taken at a depth d below the earth’s surface. Applying the shell’s theorem for the figure we can observe that only the mass which lies inside the sphere of radius R-d is responsible for the acceleration due to gravity at that point.
\[\begin{align}
& \dfrac{\text{Mass of sphere inside}}{\text{Mass of complete sphere }}=\left[ \dfrac{M'}{M} \right]={{\left[ \dfrac{R-d}{R} \right]}^{3}} \\
& g'=\dfrac{GM'}{{{r}^{2}}}=\dfrac{GM}{{{(R-d)}^{2}}}{{\left[ \dfrac{R-d}{R} \right]}^{3}}=\dfrac{GM}{{{R}^{2}}}\left[ \dfrac{R-d}{R} \right] \\
\end{align}\]
The relation clearly shows that with an increase in depth the acceleration due to gravity decreases.
Note: Since the force due to gravity is a vector, it is possible to prove the shell’s theorem. Additionally, the theorem also states that at any point inside a hollow shell, force due to gravity becomes zero.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE