
Discuss variation of $ g $ with
(A) Altitude
(B) Depth
Answer
556.8k+ views
Hint : Acceleration due to gravity varies differently with altitude and depth. For altitude, we simply put the height $ h $ in the formula and get the required result. But for its accurate value, we need to calculate the mass of the earth in terms of its density and then change the radius according to the depth.
Formula used:
Acceleration due to gravity is given as,
$\Rightarrow g = \dfrac{{GM}}{{{R^2}}} $
where, $ G $ Universal gravitational constant, $ M $ is the mass of the earth, $ R $ is the radius of the earth.
Complete step by step answer
(a)
Let us calculate $ g $ at a height of $ h $ .
We know that,
$\Rightarrow g = \dfrac{{GM}}{{{R^2}}} $ $ - - - - (1) $
At the height $ h $ , $ R $ changes to $ R + h $
$\Rightarrow R \to R + h $
$\Rightarrow {g_h} = \dfrac{{GM}}{{{{(R + h)}^2}}} $ $ - - - - (2) $
Where, $ {g_h} $ is the value of $ g $ at height $ h $ .
Dividing equation $ (2) $ by $ (1) $ , we get
$\Rightarrow \dfrac{{{g_h}}}{g} = \dfrac{{{R^2}}}{{{{(R + h)}^2}}} $
$\Rightarrow \dfrac{{{g_h}}}{g} = \dfrac{{{R^2}}}{{{R^2}{{(1 + \dfrac{h}{R})}^2}}} $
Cancelling out $ {R^2} $ , we get
$\Rightarrow \dfrac{{{g_h}}}{g} = \dfrac{1}{{{{(1 + \dfrac{h}{R})}^2}}} $
$\Rightarrow \dfrac{{{g_h}}}{g} = {(1 + \dfrac{h}{R})^{ - 2}} $
Using the binomial theorem, we can write is as
$\Rightarrow \dfrac{{{g_h}}}{g} = 1 - \dfrac{{2h}}{R} $
$\Rightarrow {g_h} = \left( {1 - \dfrac{{2h}}{R}} \right)g $
This is the required variation of $ g $ with an altitude $ h $ .
We can vary the value of height i.e. $ h $ and we will get a different value of $ {g_h} $ .
(b)
The density of earth is given as,
$\Rightarrow \rho = \dfrac{M}{V} $
$\Rightarrow M = \rho V $ $ - - - - (3) $
For earth, $ V $ can be written as
$\Rightarrow V = \dfrac{4}{3}\pi {R^3} $
Using this in equation $ (3) $ , we get
$\Rightarrow M = \rho \times \dfrac{4}{3}\pi {R^3} $
We use this value of $ M $ in equation $ (1) $
$\Rightarrow g = \dfrac{{G \times \rho \times \dfrac{4}{3}\pi {R^3}}}{{{R^2}}} $
$\Rightarrow g = G \times \rho \times \dfrac{4}{3}\pi R $ $ - - - - (5) $
Now, the value of $ g $ at a depth $ d $ is given as
$\Rightarrow {g_d} = G \times \rho \times \dfrac{4}{3}\pi \left( {R - d} \right) $ $ - - - - (6) $
Dividing equation $ (6) $ by $ (5) $ , we get
$\Rightarrow \dfrac{{{g_d}}}{g} = \dfrac{{G \times \rho \times \dfrac{4}{3}\pi \left( {R - d} \right)}}{{G \times \rho \times \dfrac{4}{3}\pi R}} $
$\Rightarrow \dfrac{{{g_d}}}{g} = \dfrac{{\left( {R - d} \right)}}{R} $
We can write this as
$\Rightarrow \dfrac{{{g_d}}}{g} = \left( {1 - \dfrac{d}{R}} \right) $
$\Rightarrow {g_d} = \left( {1 - \dfrac{d}{R}} \right)g $
This is the required variation of $ g $ with depth.
In this case of measuring $ g $ at a depth $ d $ , we can vary the value of $ d $ and we will get different values of $ {g_d} $ .
Note
In the case of measuring $ g $ at an altitude of $ h $ , while using binomial theorem, we make an assumption that $ h < < R $ . Thus this formula holds true only for those cases where the height at which we are measuring $ g $ is negligible with respect to $ R $ .
Formula used:
Acceleration due to gravity is given as,
$\Rightarrow g = \dfrac{{GM}}{{{R^2}}} $
where, $ G $ Universal gravitational constant, $ M $ is the mass of the earth, $ R $ is the radius of the earth.
Complete step by step answer
(a)
Let us calculate $ g $ at a height of $ h $ .
We know that,
$\Rightarrow g = \dfrac{{GM}}{{{R^2}}} $ $ - - - - (1) $
At the height $ h $ , $ R $ changes to $ R + h $
$\Rightarrow R \to R + h $
$\Rightarrow {g_h} = \dfrac{{GM}}{{{{(R + h)}^2}}} $ $ - - - - (2) $
Where, $ {g_h} $ is the value of $ g $ at height $ h $ .
Dividing equation $ (2) $ by $ (1) $ , we get
$\Rightarrow \dfrac{{{g_h}}}{g} = \dfrac{{{R^2}}}{{{{(R + h)}^2}}} $
$\Rightarrow \dfrac{{{g_h}}}{g} = \dfrac{{{R^2}}}{{{R^2}{{(1 + \dfrac{h}{R})}^2}}} $
Cancelling out $ {R^2} $ , we get
$\Rightarrow \dfrac{{{g_h}}}{g} = \dfrac{1}{{{{(1 + \dfrac{h}{R})}^2}}} $
$\Rightarrow \dfrac{{{g_h}}}{g} = {(1 + \dfrac{h}{R})^{ - 2}} $
Using the binomial theorem, we can write is as
$\Rightarrow \dfrac{{{g_h}}}{g} = 1 - \dfrac{{2h}}{R} $
$\Rightarrow {g_h} = \left( {1 - \dfrac{{2h}}{R}} \right)g $
This is the required variation of $ g $ with an altitude $ h $ .
We can vary the value of height i.e. $ h $ and we will get a different value of $ {g_h} $ .
(b)
The density of earth is given as,
$\Rightarrow \rho = \dfrac{M}{V} $
$\Rightarrow M = \rho V $ $ - - - - (3) $
For earth, $ V $ can be written as
$\Rightarrow V = \dfrac{4}{3}\pi {R^3} $
Using this in equation $ (3) $ , we get
$\Rightarrow M = \rho \times \dfrac{4}{3}\pi {R^3} $
We use this value of $ M $ in equation $ (1) $
$\Rightarrow g = \dfrac{{G \times \rho \times \dfrac{4}{3}\pi {R^3}}}{{{R^2}}} $
$\Rightarrow g = G \times \rho \times \dfrac{4}{3}\pi R $ $ - - - - (5) $
Now, the value of $ g $ at a depth $ d $ is given as
$\Rightarrow {g_d} = G \times \rho \times \dfrac{4}{3}\pi \left( {R - d} \right) $ $ - - - - (6) $
Dividing equation $ (6) $ by $ (5) $ , we get
$\Rightarrow \dfrac{{{g_d}}}{g} = \dfrac{{G \times \rho \times \dfrac{4}{3}\pi \left( {R - d} \right)}}{{G \times \rho \times \dfrac{4}{3}\pi R}} $
$\Rightarrow \dfrac{{{g_d}}}{g} = \dfrac{{\left( {R - d} \right)}}{R} $
We can write this as
$\Rightarrow \dfrac{{{g_d}}}{g} = \left( {1 - \dfrac{d}{R}} \right) $
$\Rightarrow {g_d} = \left( {1 - \dfrac{d}{R}} \right)g $
This is the required variation of $ g $ with depth.
In this case of measuring $ g $ at a depth $ d $ , we can vary the value of $ d $ and we will get different values of $ {g_d} $ .
Note
In the case of measuring $ g $ at an altitude of $ h $ , while using binomial theorem, we make an assumption that $ h < < R $ . Thus this formula holds true only for those cases where the height at which we are measuring $ g $ is negligible with respect to $ R $ .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which animal has three hearts class 11 biology CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

Mention the basic forces in nature class 11 physics CBSE

What is centripetal acceleration Derive the expression class 11 physics CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

