What is the distance of closest approach to the nucleus of an \[\alpha \] -particle which
undergoes scattering by 180° in the Geiger-Marsden experiment?
Answer
Verified
410k+ views
Hint: In the year 1909, this experiment was performed by Hans Geiger and Ernest Marsden, under the direction of Ernest Rutherford. In this case, when the particle reaches the closest distance to the nucleus, it will come to rest and its initial kinetic energy will be completely transformed into potential energy.
Complete step by step solution: In this case, when the \[\alpha \] particle reaches to the closest distance to the nucleus, it will come to rest and its initial kinetic energy will be completely transformed into potential energy.
This condition can be given by the relation,
\[\dfrac{1}{2}m{{v}_{i}}^{2}=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\dfrac{(2e)(Ze)}{{{r}_{0}}}\]
where, v = initial speed
Z = atomic number of the nucleus
m = mass of the alpha-particle
\[{{r}_{0}}\]= distance of closest approach of the \[\alpha \] particle to the nucleus.
e = charge of an electron = \[1.6\times {{10}^{-19}}\]
For the Geiger-Marsden experiment’
\[\begin{align}
& \dfrac{1}{2}m{{v}_{i}}=5.5MeV \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,=5.5\times {{10}^{6}}\times 1.6\times {{10}^{-19}} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,=8.8\times {{10}^{-13}} \\
\end{align}\]
Now substituting the value to kinetic energy in the above equation,
\[8.8\times {{10}^{-13}}=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\dfrac{(2e)(Ze)}{{{r}_{0}}}\]
\[\begin{align}
& {{r}_{0}}=4.136\times {{10}^{-15}} \\
& {{r}_{0}}=4.3fm \\
\end{align}\]
After rearranging,
\[{{r}_{0}}=\dfrac{1}{4\times 3.14\times 8.86\times {{10}^{-12}}}\dfrac{2\times 79\times {{(1.6\times {{10}^{-19}})}^{2}}}{8.8\times {{10}^{-13}}}\]
\[\begin{align}
& {{r}_{0}}=412.82\times {{10}^{-16}} \\
& {{r}_{0}}=41.2fm \\
\end{align}\]
Therefore, the distance of closest approach is \[41.2fm\].
Note: In Rutherford’s famous \[\alpha \] particle scattering experiments, \[\alpha \] particle (\[+2e=2\times 1.6\times {{10}^{-19}}C\,\], mass = \[6.6\times {{10}^{-27}}\]kg) were fired at a gold nucleus (\[+79e=+79\times 1.6\times {{10}^{-19}}C\]). We have used the values accordingly. Energy of the alpha particle is also taken as 5.5 MeV.
Complete step by step solution: In this case, when the \[\alpha \] particle reaches to the closest distance to the nucleus, it will come to rest and its initial kinetic energy will be completely transformed into potential energy.
This condition can be given by the relation,
\[\dfrac{1}{2}m{{v}_{i}}^{2}=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\dfrac{(2e)(Ze)}{{{r}_{0}}}\]
where, v = initial speed
Z = atomic number of the nucleus
m = mass of the alpha-particle
\[{{r}_{0}}\]= distance of closest approach of the \[\alpha \] particle to the nucleus.
e = charge of an electron = \[1.6\times {{10}^{-19}}\]
For the Geiger-Marsden experiment’
\[\begin{align}
& \dfrac{1}{2}m{{v}_{i}}=5.5MeV \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,=5.5\times {{10}^{6}}\times 1.6\times {{10}^{-19}} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,=8.8\times {{10}^{-13}} \\
\end{align}\]
Now substituting the value to kinetic energy in the above equation,
\[8.8\times {{10}^{-13}}=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\dfrac{(2e)(Ze)}{{{r}_{0}}}\]
\[\begin{align}
& {{r}_{0}}=4.136\times {{10}^{-15}} \\
& {{r}_{0}}=4.3fm \\
\end{align}\]
After rearranging,
\[{{r}_{0}}=\dfrac{1}{4\times 3.14\times 8.86\times {{10}^{-12}}}\dfrac{2\times 79\times {{(1.6\times {{10}^{-19}})}^{2}}}{8.8\times {{10}^{-13}}}\]
\[\begin{align}
& {{r}_{0}}=412.82\times {{10}^{-16}} \\
& {{r}_{0}}=41.2fm \\
\end{align}\]
Therefore, the distance of closest approach is \[41.2fm\].
Note: In Rutherford’s famous \[\alpha \] particle scattering experiments, \[\alpha \] particle (\[+2e=2\times 1.6\times {{10}^{-19}}C\,\], mass = \[6.6\times {{10}^{-27}}\]kg) were fired at a gold nucleus (\[+79e=+79\times 1.6\times {{10}^{-19}}C\]). We have used the values accordingly. Energy of the alpha particle is also taken as 5.5 MeV.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE