Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Why doesn’t the Earth fall into the Sun?

seo-qna
SearchIcon
Answer
VerifiedVerified
357k+ views
Hint:As we know, each and every planet including Earth is rotating in their respective orbits around the Sun, or we can say that every planet is fixed on their respective orbits. And these things work on the basis of Kepler’s third law.

Complete step by step answer:
When a planet is in orbit around a Sun, Kepler's third law relates the distance between the planet and the Sun to the orbital period. If the orbital period $T$ is in years and the semi major distance $'a'$ is in AU then:
${T^2} = {a^3}$
The gravitational attraction force between the planet and the Sun balances the centripetal force, maintaining the planet in an elliptical orbit, according to Newton's laws of motion.
There is no such thing as a gravitational pull, as we now know. An orbiting body does not have a centripetal force. The bulk of the Sun, and to a lesser extent the Earth, bends space-time, according to General Relativity. In reality, a planet in orbit follows a space-time geodesic. The four-dimensional equivalent of a straight line is a geodesic.
Planets in orbit also tend to get further away from the Sun as time passes due to numerous gravitational influences. As a result, unless the Earth is slowed by the gravity of another planet, it will never be drawn closer to the Sun.

Note:Any planet doesn’t fall into the Sun only because of its respective orbits, as an orbit is the path that one thing follows around another object or its centre of gravity on a regular, repeated basis. Planets, moons, asteroids, and man-made devices are examples of orbiting objects known as satellites. Gravity causes objects to orbit one other. Gravity is the gravitational force that occurs between any two mass objects.