What is the domain and range of \[y=\tan x\]?
Answer
Verified
417k+ views
Hint: In this problem, we have to find the domain and range of the given function \[y=\tan x\]. We know that the domain of the function \[y=\tan x\] is all real numbers except the values where \[\cos x\] is equal to zero, i.e. the values \[\dfrac{\pi }{2}+\pi n\] for all integers n. The range of the tangent function is all real numbers. We can draw the graph for the given function and write the domain and the range.
Complete step by step solution:
Here we have to find the domain and the range of the given function \[y=\tan x\].
We know that the domain of the function \[y=\tan x\] is all real numbers except the values where \[\cos x\] is equal to zero, i.e. the values \[\dfrac{\pi }{2}+\pi n\] for all integers n as we know that \[\tan x=\dfrac{\sin x}{\cos x}\] which is not defined when denominator is 0.
The range of the tangent function is all real numbers.
If we plug \[y=\tan x\] in a graphing calculator, we can see that the ends of each section continue on infinitely along the y-axis.
Therefore, the domain of the given function \[y=\tan x\] is \[\left( \theta \ne k\dfrac{\pi }{2},\text{ where k is an integer} \right)\].
The range is \[\left( -\infty ,\infty \right)\].
Note: We should always remember that the function \[y=\tan x\] is all real numbers except the values where \[\cos x\] is equal to zero, i.e. the values \[\dfrac{\pi }{2}+\pi n\] for all integers n as we know that \[\tan x=\dfrac{\sin x}{\cos x}\] which is not defined when denominator is 0. The range of the tangent function is all real numbers.
Complete step by step solution:
Here we have to find the domain and the range of the given function \[y=\tan x\].
We know that the domain of the function \[y=\tan x\] is all real numbers except the values where \[\cos x\] is equal to zero, i.e. the values \[\dfrac{\pi }{2}+\pi n\] for all integers n as we know that \[\tan x=\dfrac{\sin x}{\cos x}\] which is not defined when denominator is 0.
The range of the tangent function is all real numbers.
If we plug \[y=\tan x\] in a graphing calculator, we can see that the ends of each section continue on infinitely along the y-axis.
Therefore, the domain of the given function \[y=\tan x\] is \[\left( \theta \ne k\dfrac{\pi }{2},\text{ where k is an integer} \right)\].
The range is \[\left( -\infty ,\infty \right)\].
Note: We should always remember that the function \[y=\tan x\] is all real numbers except the values where \[\cos x\] is equal to zero, i.e. the values \[\dfrac{\pi }{2}+\pi n\] for all integers n as we know that \[\tan x=\dfrac{\sin x}{\cos x}\] which is not defined when denominator is 0. The range of the tangent function is all real numbers.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE