Answer
Verified
396.6k+ views
Hint: A function is a relation which describes that there should be only one output for each input, or we can say that a special kind of relation (a set of ordered pairs), which follows a rule that is every \[x\] value must be associated with a \[y\]value.
Complete step-by-step solution:
We know that, \[\ln \left( x \right)\]is defined for all places where \[x > 0\], that is \[x\] should always be positive.
Here, in this question, \[f\left( x \right) = \ln \left( x \right)\] (fractional part of \[x\]). We also know that the range of the fractional part of \[x\] is \[0 \leqslant (x) < 1\].
But, to define \[f\left( x \right)\]as a fractional part of \[x\], \[(x) \ne 0\] , and we also know that \[0 \leqslant (x) < 1\] means that domain is where all the real numbers were \[(x) = 0\].
And \[(x) = 0\]when \[x\] is some kind of an integer.
Therefore, the total set of all the integers numbers must be removed from real numbers.
So, the domain comes out to be \[x = R - Z\].
So, according to the solution, Option B is the right option.
Note: One thing which we should keep in mind is that \[\ln \left( x \right)\] function is defined for all \[x > 0\]( \[x\] is always negative, not even equal to 0). The Range of the fractional part of x is always \[0 \leqslant (x) < 1\]. In Mathematics, domain is a collection of the first values in the order, and range is the collection of the second values.
Complete step-by-step solution:
We know that, \[\ln \left( x \right)\]is defined for all places where \[x > 0\], that is \[x\] should always be positive.
Here, in this question, \[f\left( x \right) = \ln \left( x \right)\] (fractional part of \[x\]). We also know that the range of the fractional part of \[x\] is \[0 \leqslant (x) < 1\].
But, to define \[f\left( x \right)\]as a fractional part of \[x\], \[(x) \ne 0\] , and we also know that \[0 \leqslant (x) < 1\] means that domain is where all the real numbers were \[(x) = 0\].
And \[(x) = 0\]when \[x\] is some kind of an integer.
Therefore, the total set of all the integers numbers must be removed from real numbers.
So, the domain comes out to be \[x = R - Z\].
So, according to the solution, Option B is the right option.
Note: One thing which we should keep in mind is that \[\ln \left( x \right)\] function is defined for all \[x > 0\]( \[x\] is always negative, not even equal to 0). The Range of the fractional part of x is always \[0 \leqslant (x) < 1\]. In Mathematics, domain is a collection of the first values in the order, and range is the collection of the second values.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE