Why don’t two equipotential surfaces intersect each other?
Answer
Verified
466.2k+ views
Hint: Equipotential surfaces cannot intersect at any point. Such a situation is impossible and non-existing. If such a situation arises then at a single point there will be the same physical quantities with different directions and magnitudes, which is not possible.
Complete answer:
Equipotential surfaces are those with constant electric potential throughout. The potential is defined as the work done to bring charge from infinity to another charge ‘q’. The electric potential experienced due to a charge q is given by –
\[V=\dfrac{q}{4\pi {{\varepsilon }_{0}}r}\], where ‘r’ is the distance of a point ‘P’ from the charge ‘q’.
When we closely analyse this equation, we can understand that there are an infinite number of ‘P’s in a given space which are at a distance ‘r’ from the charge ‘q’. Obviously, these points when joined together in 2-D gives a circle as shown below -
When joined in 3-D, it constitutes a spherical surface. Each circle shows an equipotential surface when taken in 3-D. From the diagram it is clear that the equipotential surfaces never intersect. We can also see that the equipotential surface is perpendicular to the electric field direction. i.e., the potential keeps on decreasing as the distance from the source increases and both are related by a factor of ‘r’.
Now, let us consider the situation when two equipotential surfaces intersect, then will see that the electric field strength and electric potential tends to have more than one value, which is unacceptable. For an electric field from more than two charges the equipotential surface is such that it is the vector sum of all the individual surfaces.
Additional Information:
The electric field and potential are related by
\[\overrightarrow{E}=\dfrac{V}{r}\]
Note:
The electric field is always perpendicular to the equipotential surface. The electric field is also constant along the equipotential surface. The two are related such that a foregoing electric field weakens with distance and the potential drops with this.
Complete answer:
Equipotential surfaces are those with constant electric potential throughout. The potential is defined as the work done to bring charge from infinity to another charge ‘q’. The electric potential experienced due to a charge q is given by –
\[V=\dfrac{q}{4\pi {{\varepsilon }_{0}}r}\], where ‘r’ is the distance of a point ‘P’ from the charge ‘q’.
When we closely analyse this equation, we can understand that there are an infinite number of ‘P’s in a given space which are at a distance ‘r’ from the charge ‘q’. Obviously, these points when joined together in 2-D gives a circle as shown below -
When joined in 3-D, it constitutes a spherical surface. Each circle shows an equipotential surface when taken in 3-D. From the diagram it is clear that the equipotential surfaces never intersect. We can also see that the equipotential surface is perpendicular to the electric field direction. i.e., the potential keeps on decreasing as the distance from the source increases and both are related by a factor of ‘r’.
Now, let us consider the situation when two equipotential surfaces intersect, then will see that the electric field strength and electric potential tends to have more than one value, which is unacceptable. For an electric field from more than two charges the equipotential surface is such that it is the vector sum of all the individual surfaces.
Additional Information:
The electric field and potential are related by
\[\overrightarrow{E}=\dfrac{V}{r}\]
Note:
The electric field is always perpendicular to the equipotential surface. The electric field is also constant along the equipotential surface. The two are related such that a foregoing electric field weakens with distance and the potential drops with this.
Recently Updated Pages
One difference between a Formal Letter and an informal class null english null
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
State the laws of reflection of light
What is the chemical name of Iron class 11 chemistry CBSE