Answer
Verified
447k+ views
Hint: In this question we will proceed with giving the definition of Doppler Effect and then according to the given condition in question we will proceed with using the formula which relates frequency, wavelength, and speed of sound.
Formula used:
\[f = \dfrac{v}{\lambda }\;or\;\lambda = \dfrac{v}{f}\]
Where \[f\] is the frequency, \[\lambda \] is wavelength and \[v\] is the velocity of the sound wave.
Complete step by step answer:
Given Data: -
Let us suppose a source of sound \[S\] is emitting sound waves of frequency \[f\]. These waves are traveling in the medium with velocity \[v\]. The observer is at rest.
Doppler Effect: -
It is defined as the phenomena of apparent change in frequency of sound due to relative motion between the source of the sound and observed.
From the above given condition there may be two cases
Case 1:
When the source is moving with velocity \[{v_s}\] towards the observer at rest then,
the relative velocity of sound waves reaching to the observer \[ = v - {v_s}\]
now the apparent wavelength will be as follows:
$ \lambda ' = \dfrac{{v - {v_s}}}{f}$
so, the apparent frequency is as follows
$\Rightarrow f' = \dfrac{v}{{\lambda '}} = \dfrac{v}{{v - {v_s}/f}} $
$\Rightarrow f' = \dfrac{v}{{v - {v_s}}}f $
Case 2:
When the source is moving with velocity \[{v_s}\] away from the observer at rest then,
the relative velocity of sound waves reaching to the observer \[ = v - ( - {v_s}) = v + {v_s}\]
now the apparent wavelength will be as follows:
\[\lambda ' = \dfrac{{v + {v_s}}}{f}\]
so, the apparent frequency of the sound waves reaching to observer is as follows
$\Rightarrow f' = \dfrac{v}{{\lambda '}} = \dfrac{v}{{v + {v_s}/f}} $
$\Rightarrow f' = \dfrac{v}{{v + {v_s}}}f$
$\therefore$ The expression for the apparent frequency of the sound heard when the the source is in motion with respect to an observer at rest is $f' = \dfrac{v}{{v + {v_s}}}f$.
Note:
Before doing this question we should know the Doppler effect first. The apparent frequency is greater than the actual frequency as the source moves towards the listener and the apparent frequency is less than the actual frequency as the source moves away from the listener.
Formula used:
\[f = \dfrac{v}{\lambda }\;or\;\lambda = \dfrac{v}{f}\]
Where \[f\] is the frequency, \[\lambda \] is wavelength and \[v\] is the velocity of the sound wave.
Complete step by step answer:
Given Data: -
Let us suppose a source of sound \[S\] is emitting sound waves of frequency \[f\]. These waves are traveling in the medium with velocity \[v\]. The observer is at rest.
Doppler Effect: -
It is defined as the phenomena of apparent change in frequency of sound due to relative motion between the source of the sound and observed.
From the above given condition there may be two cases
Case 1:
When the source is moving with velocity \[{v_s}\] towards the observer at rest then,
the relative velocity of sound waves reaching to the observer \[ = v - {v_s}\]
now the apparent wavelength will be as follows:
$ \lambda ' = \dfrac{{v - {v_s}}}{f}$
so, the apparent frequency is as follows
$\Rightarrow f' = \dfrac{v}{{\lambda '}} = \dfrac{v}{{v - {v_s}/f}} $
$\Rightarrow f' = \dfrac{v}{{v - {v_s}}}f $
Case 2:
When the source is moving with velocity \[{v_s}\] away from the observer at rest then,
the relative velocity of sound waves reaching to the observer \[ = v - ( - {v_s}) = v + {v_s}\]
now the apparent wavelength will be as follows:
\[\lambda ' = \dfrac{{v + {v_s}}}{f}\]
so, the apparent frequency of the sound waves reaching to observer is as follows
$\Rightarrow f' = \dfrac{v}{{\lambda '}} = \dfrac{v}{{v + {v_s}/f}} $
$\Rightarrow f' = \dfrac{v}{{v + {v_s}}}f$
$\therefore$ The expression for the apparent frequency of the sound heard when the the source is in motion with respect to an observer at rest is $f' = \dfrac{v}{{v + {v_s}}}f$.
Note:
Before doing this question we should know the Doppler effect first. The apparent frequency is greater than the actual frequency as the source moves towards the listener and the apparent frequency is less than the actual frequency as the source moves away from the listener.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE