
Draw a neat diagram of the blast furnace used in the extraction of iron and label the parts.
Answer
493.8k+ views
Hint: Iron is extracted from iron ores such as haematite contain iron(III) oxide, ${ Fe }_{ 2 }{ O }_{ 3 }$ in a huge container called a blast furnace. Now you should try to answer this question.
Complete step by step solution:
We should know that Carbon is more reactive than iron, so it can displace iron from iron(III) oxide. Here we can see the equations for the reaction:
${ 2Fe }_{ 2 }{ O }_{ 3 }(s)+3C(s)\rightarrow 4Fe(l)+3CO_{ 2 }(g)$
The blast furnace is so hot that carbon monoxide can be used, in place of carbon, to reduce the iron(III) oxide:
${ Fe }_{ 2 }{ O }_{ 3 }(s)+3CO(s)\rightarrow 2Fe(l)+3CO_{ 2 }(g)$
Now, we will discuss the reaction involved in removing the impurities.
The calcium carbonate or we can say the limestone thermally decomposes to form calcium oxide.
$CaCO_{ 3 }(s)\rightarrow CaO(s)+CO_{ 2 }(g)$
The calcium oxide formed will then react with silica impurities in the haematite, to produce slag (calcium silicate). This reaction is a neutralization reaction because calcium oxide is basic and silica is acidic.
$CaO(s)+SiO_{ 2 }(g)\rightarrow CaSiO_{ 3 }(l)$
This diagram below represents the temperatures required for each reaction to proceed successfully -
Note: We should know that the molten iron from the bottom of the furnace can be used as cast iron. It is very runny when it is molten and doesn't shrink much when it solidifies. It is therefore ideal for making castings as the name suggests.
Complete step by step solution:
We should know that Carbon is more reactive than iron, so it can displace iron from iron(III) oxide. Here we can see the equations for the reaction:
${ 2Fe }_{ 2 }{ O }_{ 3 }(s)+3C(s)\rightarrow 4Fe(l)+3CO_{ 2 }(g)$
The blast furnace is so hot that carbon monoxide can be used, in place of carbon, to reduce the iron(III) oxide:
${ Fe }_{ 2 }{ O }_{ 3 }(s)+3CO(s)\rightarrow 2Fe(l)+3CO_{ 2 }(g)$
Now, we will discuss the reaction involved in removing the impurities.
The calcium carbonate or we can say the limestone thermally decomposes to form calcium oxide.
$CaCO_{ 3 }(s)\rightarrow CaO(s)+CO_{ 2 }(g)$
The calcium oxide formed will then react with silica impurities in the haematite, to produce slag (calcium silicate). This reaction is a neutralization reaction because calcium oxide is basic and silica is acidic.
$CaO(s)+SiO_{ 2 }(g)\rightarrow CaSiO_{ 3 }(l)$
This diagram below represents the temperatures required for each reaction to proceed successfully -

Note: We should know that the molten iron from the bottom of the furnace can be used as cast iron. It is very runny when it is molten and doesn't shrink much when it solidifies. It is therefore ideal for making castings as the name suggests.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Why was the Vernacular Press Act passed by British class 11 social science CBSE

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

Name the nuclear plant located in Uttar Pradesh class 11 social science CBSE

What steps did the French revolutionaries take to create class 11 social science CBSE

How did silk routes link the world Explain with three class 11 social science CBSE

What are the various challenges faced by political class 11 social science CBSE
