Draw a neat diagram of the blast furnace used in the extraction of iron and label the parts.
Answer
Verified
481.2k+ views
Hint: Iron is extracted from iron ores such as haematite contain iron(III) oxide, ${ Fe }_{ 2 }{ O }_{ 3 }$ in a huge container called a blast furnace. Now you should try to answer this question.
Complete step by step solution:
We should know that Carbon is more reactive than iron, so it can displace iron from iron(III) oxide. Here we can see the equations for the reaction:
${ 2Fe }_{ 2 }{ O }_{ 3 }(s)+3C(s)\rightarrow 4Fe(l)+3CO_{ 2 }(g)$
The blast furnace is so hot that carbon monoxide can be used, in place of carbon, to reduce the iron(III) oxide:
${ Fe }_{ 2 }{ O }_{ 3 }(s)+3CO(s)\rightarrow 2Fe(l)+3CO_{ 2 }(g)$
Now, we will discuss the reaction involved in removing the impurities.
The calcium carbonate or we can say the limestone thermally decomposes to form calcium oxide.
$CaCO_{ 3 }(s)\rightarrow CaO(s)+CO_{ 2 }(g)$
The calcium oxide formed will then react with silica impurities in the haematite, to produce slag (calcium silicate). This reaction is a neutralization reaction because calcium oxide is basic and silica is acidic.
$CaO(s)+SiO_{ 2 }(g)\rightarrow CaSiO_{ 3 }(l)$
This diagram below represents the temperatures required for each reaction to proceed successfully -
Note: We should know that the molten iron from the bottom of the furnace can be used as cast iron. It is very runny when it is molten and doesn't shrink much when it solidifies. It is therefore ideal for making castings as the name suggests.
Complete step by step solution:
We should know that Carbon is more reactive than iron, so it can displace iron from iron(III) oxide. Here we can see the equations for the reaction:
${ 2Fe }_{ 2 }{ O }_{ 3 }(s)+3C(s)\rightarrow 4Fe(l)+3CO_{ 2 }(g)$
The blast furnace is so hot that carbon monoxide can be used, in place of carbon, to reduce the iron(III) oxide:
${ Fe }_{ 2 }{ O }_{ 3 }(s)+3CO(s)\rightarrow 2Fe(l)+3CO_{ 2 }(g)$
Now, we will discuss the reaction involved in removing the impurities.
The calcium carbonate or we can say the limestone thermally decomposes to form calcium oxide.
$CaCO_{ 3 }(s)\rightarrow CaO(s)+CO_{ 2 }(g)$
The calcium oxide formed will then react with silica impurities in the haematite, to produce slag (calcium silicate). This reaction is a neutralization reaction because calcium oxide is basic and silica is acidic.
$CaO(s)+SiO_{ 2 }(g)\rightarrow CaSiO_{ 3 }(l)$
This diagram below represents the temperatures required for each reaction to proceed successfully -
Note: We should know that the molten iron from the bottom of the furnace can be used as cast iron. It is very runny when it is molten and doesn't shrink much when it solidifies. It is therefore ideal for making castings as the name suggests.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
State the laws of reflection of light