Answer
Verified
449.4k+ views
Hint: You can break the complex Venn diagrams into easier forms then use them to create the main Venn diagram it will help us understand the basics also.
Complete step-by-step answer:
Let’s start with the 1st part that is \[{\left( {A \cup B} \right)^\prime }\] .
So, for drawing Venn diagram of \[{\left( {A \cup B} \right)^\prime }\] , We have to break it down into parts this is what a normal Venn Diagram of \[\left( {A \cup B} \right)\] looks like.
So. For drawing Venn diagram of \[{\left( {A \cup B} \right)^\prime }\] , We will invert the diagram of \[\left( {A \cup B} \right)\] and then it looks like this.
Here \[\left( {A \cup B} \right)\] is represented by white color and \[{\left( {A \cup B} \right)^\prime }\] is represented by the navy blue color. Using simple Venn Diagrams to create complex diagrams is easy to grasp and easy for students to hold on to it.
Let’s go on to the 2nd part that is \[A' \cap B'\] .
So, for drawing Venn diagrams of \[A' \cap B'\] , We have to break it down into parts. This is what a normal Venn Diagram of \[A'\] and \[B'\] looks like.
Now, to get a Venn diagram of \[A' \cap B'\] we will overlap Venn Diagrams of \[A'\] and \[B'\] , then we will easily get the Venn diagram.
After Overlapping Venn Diagrams of \[A'\] and \[B'\] , We Get this Venn Diagram. You must be thinking why it looks like the Venn diagram of \[{\left( {A \cup B} \right)^\prime }\]. That’s because it is also the proof of one part of the De Morgan's laws that states \[{\left( {A \cup B} \right)^\prime } = A' \cap B'\] .
Let’s go on to the 3rd part now, that is \[{\left( {A \cap B} \right)^\prime }\] .
So, for drawing Venn diagram of \[{\left( {A \cap B} \right)^\prime }\] , We have to break it down into parts this is what a normal Venn Diagrams of \[\left( {A \cap B} \right)\] looks like.
Now, to get the Venn diagram of \[A' \cup B'\] , we will overlap the Venn Diagrams of \[A'\] and \[B'\]. Then remove the unique part of \[A\] and \[B\] , As both of them appear in the complement of Opposite like we can see unique part of \[A\] in \[B'\] and unique part of \[B\] in \[A'\] .
After removing it we get this Venn diagram which only consists of \[\left( {A \cap B} \right)\] . Here is the final Venn diagram of \[A' \cup B'\] .
Additional Information: This can be done easily with the use of De Morgan's laws
Note: If we look closely at all four questions, we can easily state that these are the proofs of De Morgan's laws. Using these four we can easily prove both of De Morgarn’s laws.
Complete step-by-step answer:
Let’s start with the 1st part that is \[{\left( {A \cup B} \right)^\prime }\] .
So, for drawing Venn diagram of \[{\left( {A \cup B} \right)^\prime }\] , We have to break it down into parts this is what a normal Venn Diagram of \[\left( {A \cup B} \right)\] looks like.
So. For drawing Venn diagram of \[{\left( {A \cup B} \right)^\prime }\] , We will invert the diagram of \[\left( {A \cup B} \right)\] and then it looks like this.
Here \[\left( {A \cup B} \right)\] is represented by white color and \[{\left( {A \cup B} \right)^\prime }\] is represented by the navy blue color. Using simple Venn Diagrams to create complex diagrams is easy to grasp and easy for students to hold on to it.
Let’s go on to the 2nd part that is \[A' \cap B'\] .
So, for drawing Venn diagrams of \[A' \cap B'\] , We have to break it down into parts. This is what a normal Venn Diagram of \[A'\] and \[B'\] looks like.
Now, to get a Venn diagram of \[A' \cap B'\] we will overlap Venn Diagrams of \[A'\] and \[B'\] , then we will easily get the Venn diagram.
After Overlapping Venn Diagrams of \[A'\] and \[B'\] , We Get this Venn Diagram. You must be thinking why it looks like the Venn diagram of \[{\left( {A \cup B} \right)^\prime }\]. That’s because it is also the proof of one part of the De Morgan's laws that states \[{\left( {A \cup B} \right)^\prime } = A' \cap B'\] .
Let’s go on to the 3rd part now, that is \[{\left( {A \cap B} \right)^\prime }\] .
So, for drawing Venn diagram of \[{\left( {A \cap B} \right)^\prime }\] , We have to break it down into parts this is what a normal Venn Diagrams of \[\left( {A \cap B} \right)\] looks like.
Now, To get the Venn diagram of \[{\left( {A \cap B} \right)^\prime }\] , We have to simply invert the Venn diagram of \[\left( {A \cap B} \right)\] . After Inverting it looks like this.
Let’s go on to the 4th part now, that is \[A' \cup B'\] .
So, for drawing a Venn diagram of \[A' \cup B'\] , We have to break it down into parts. This is what a normal Venn Diagram of \[A'\] and \[B'\] looks like.
Now, to get the Venn diagram of \[A' \cup B'\] , we will overlap the Venn Diagrams of \[A'\] and \[B'\]. Then remove the unique part of \[A\] and \[B\] , As both of them appear in the complement of Opposite like we can see unique part of \[A\] in \[B'\] and unique part of \[B\] in \[A'\] .
After removing it we get this Venn diagram which only consists of \[\left( {A \cap B} \right)\] . Here is the final Venn diagram of \[A' \cup B'\] .
Additional Information: This can be done easily with the use of De Morgan's laws
Note: If we look closely at all four questions, we can easily state that these are the proofs of De Morgan's laws. Using these four we can easily prove both of De Morgarn’s laws.
Watch videos on
Draw the appropriate Venn diagram for each of the following:
(i)\[{\left( {A \cup B} \right)^\prime }\]
(ii)\[A' \cap B'\]
(iii)\[{\left( {A \cap B} \right)^\prime }\]
(iv)\[A' \cup B'\]
(i)\[{\left( {A \cup B} \right)^\prime }\]
(ii)\[A' \cap B'\]
(iii)\[{\left( {A \cap B} \right)^\prime }\]
(iv)\[A' \cup B'\]
Class 11 MATHS NCERT EXERCISE 1.5 (Question - 5) | Sets Class 11 Chapter 1| NCERT | Ratan Kalra Sir
Subscribe
Share
likes
205 Views
1 year ago
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE