Draw the graph of \[y = 4x - 1\]
Answer
Verified
444k+ views
Hint: Here, we will first find the points of the graph by substituting some value of \[x\] in the given equation to find the corresponding value of \[y\]. We will then substitute some value of \[y\] to find the corresponding value of \[x\], this will give us another set of points. We will then draw the graph of the given equation by using these two points. We will mark these points on the graph and connect them by a straight line.
Complete step-by-step answer:
The given equation is \[y = 4x - 1\].
We observe from this equation that the powers of \[x\] and \[y\] are both one. So, the given equation is a linear equation.
The graph of a linear equation is always a straight line.
We will first find two points lying on the graph of the given linear equation. These two points should satisfy the given linear equation.
Let us rewrite the given equation as \[4x - y = 1\].
Now we will substitute \[x = 0\] in the given equation and find the value of \[y\]. Therefore, we get
\[\begin{array}{l}4\left( 0 \right) - y = 1\\ \Rightarrow - y = 1\\ \Rightarrow y = - 1\end{array}\]
We see that when \[x = 0\], we get \[y = - 1\]. So, one point is \[A(0, - 1)\].
To find another point, we will put \[y = 3\].
\[\begin{array}{l}4x - \left( 3 \right) = 1\\ \Rightarrow 4x = 1 + 3\end{array}\]
Adding the terms, we get
\[\begin{array}{l} \Rightarrow 4x = 4\\ \Rightarrow x = 1\end{array}\]
In this case, we get \[x = 1\].
So, the second point is \[B(1,3)\].
Using these points, we will draw the graph of \[4x - y = 1\].
The point \[A(0, - 1)\] will lie on the negative \[y\]-axis and the \[x - \] coordinate is zero. The point \[B(1,3)\] will lie in the first quadrant because both \[x\] and \[y\] coordinates are positive.
Therefore, we get the graph as follows:
Note: Another method to draw the graph is by slope-intercept form.
We shall compare the given linear equation to the slope-intercept form of a linear equation. The slope-intercept form \[y = mx + c\], where \[m\] is the slope of the line and \[c\] is the \[y - \] intercept, i.e., the point where the graph cuts the \[y - \] axis.
Comparing the equation \[y = 4x - 1\] with \[y = mx + c\], we get
\[m = 4\]
\[c = - 1\].
Here the slope is 4 and the \[y - \] intercept is \[ - 1\].
First, we have to mark the \[y - \] intercept.
Since, the \[y - \] intercept is negative, i.e., \[ - 1\], it will lie on the negative \[y\] axis.
Now, the slope is 4, which can be written as \[4 = \dfrac{4}{1}\].
Here the numerator 4 means we have to go 4 units up the point \[ - 1\] and the denominator 1 means we have to go right by 1 unit.
So, the point we reach is \[(1,3)\].
Complete step-by-step answer:
The given equation is \[y = 4x - 1\].
We observe from this equation that the powers of \[x\] and \[y\] are both one. So, the given equation is a linear equation.
The graph of a linear equation is always a straight line.
We will first find two points lying on the graph of the given linear equation. These two points should satisfy the given linear equation.
Let us rewrite the given equation as \[4x - y = 1\].
Now we will substitute \[x = 0\] in the given equation and find the value of \[y\]. Therefore, we get
\[\begin{array}{l}4\left( 0 \right) - y = 1\\ \Rightarrow - y = 1\\ \Rightarrow y = - 1\end{array}\]
We see that when \[x = 0\], we get \[y = - 1\]. So, one point is \[A(0, - 1)\].
To find another point, we will put \[y = 3\].
\[\begin{array}{l}4x - \left( 3 \right) = 1\\ \Rightarrow 4x = 1 + 3\end{array}\]
Adding the terms, we get
\[\begin{array}{l} \Rightarrow 4x = 4\\ \Rightarrow x = 1\end{array}\]
In this case, we get \[x = 1\].
So, the second point is \[B(1,3)\].
Using these points, we will draw the graph of \[4x - y = 1\].
The point \[A(0, - 1)\] will lie on the negative \[y\]-axis and the \[x - \] coordinate is zero. The point \[B(1,3)\] will lie in the first quadrant because both \[x\] and \[y\] coordinates are positive.
Therefore, we get the graph as follows:
Note: Another method to draw the graph is by slope-intercept form.
We shall compare the given linear equation to the slope-intercept form of a linear equation. The slope-intercept form \[y = mx + c\], where \[m\] is the slope of the line and \[c\] is the \[y - \] intercept, i.e., the point where the graph cuts the \[y - \] axis.
Comparing the equation \[y = 4x - 1\] with \[y = mx + c\], we get
\[m = 4\]
\[c = - 1\].
Here the slope is 4 and the \[y - \] intercept is \[ - 1\].
First, we have to mark the \[y - \] intercept.
Since, the \[y - \] intercept is negative, i.e., \[ - 1\], it will lie on the negative \[y\] axis.
Now, the slope is 4, which can be written as \[4 = \dfrac{4}{1}\].
Here the numerator 4 means we have to go 4 units up the point \[ - 1\] and the denominator 1 means we have to go right by 1 unit.
So, the point we reach is \[(1,3)\].
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE