
During the sale, colour pencils were being sold in packs of 24 each and crayons in packs of 32 each. If you want full packs of both and same number of pencils and crayons, how many of each would you need to buy?
Answer
216.6k+ views
Hint- In order to find the same number of crayons and pencils, try to solve using L.C.M.
Number of colour pencils to be packed in a packet \[ = 24\]
Number of crayons to be packed in a packet \[ = 32\]
We have to find the L.C.M of $24$ and $32$.
\[
24 = 2 \times 2 \times 3 \\
32 = 2 \times 2 \times 2 \times 2 \times 2 \\
\]
L.C.M of $24$ and $ 32 $ \[{\text{ = }}2 \times 2 \times 2 \times 2 \times 2 \times 3 = 96\]
Capacity of $1$ packet of colour pencils \[ = 24\]
So, for 96 pencils, number of packets needed \[ = \dfrac{{96}}{{24}} = 4\]
$3$Now, capacity of $1$ packet of crayons \[ = 32\]
SO, for 96 crayons, number of packets needed \[ = \dfrac{{96}}{{32}} = 3\]
$\therefore $ In order to buy full packs of both and same number of pencils and crayons, we need to buy $4$ packets of colour pencils and $3$ packets of crayons.
Note- L.C.M stands for Lowest Common Multiple. For any two numbers a and b, L.C.M is the smallest positive integer that is divided by both a and b. Hence, whenever you see problems like these, L.C.M is the shortest way to find solutions.
Number of colour pencils to be packed in a packet \[ = 24\]
Number of crayons to be packed in a packet \[ = 32\]
We have to find the L.C.M of $24$ and $32$.
\[
24 = 2 \times 2 \times 3 \\
32 = 2 \times 2 \times 2 \times 2 \times 2 \\
\]
L.C.M of $24$ and $ 32 $ \[{\text{ = }}2 \times 2 \times 2 \times 2 \times 2 \times 3 = 96\]
Capacity of $1$ packet of colour pencils \[ = 24\]
So, for 96 pencils, number of packets needed \[ = \dfrac{{96}}{{24}} = 4\]
$3$Now, capacity of $1$ packet of crayons \[ = 32\]
SO, for 96 crayons, number of packets needed \[ = \dfrac{{96}}{{32}} = 3\]
$\therefore $ In order to buy full packs of both and same number of pencils and crayons, we need to buy $4$ packets of colour pencils and $3$ packets of crayons.
Note- L.C.M stands for Lowest Common Multiple. For any two numbers a and b, L.C.M is the smallest positive integer that is divided by both a and b. Hence, whenever you see problems like these, L.C.M is the shortest way to find solutions.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

