Answer
Verified
431.4k+ views
Hint: Here it is given that the polygon is a regular polygon.
As we know that the sum of all exterior angles of polygon is $360{}^\circ .$
But for regular polygons all sides of the polygon are equal.
That’s why there is only one measure of angle given in the question.
So, we have to only divide the sum of all exterior angles by the given angle for getting the number of sides of a given polygon.
Complete step by step solution:
We know that, the sum of all exterior angle of any regular polygon is always $360{}^\circ .$ Whether that quadrilateral polygon has $3$ sides or $16$ sides, its sum will always be $360{}^\circ .$
Given that, there is a regular polygon has measure of a angle is $30{}^\circ .$
So, for a regular polygon all exterior angles are equal and are of $30{}^\circ .$
As, the sum of all angles of regular polygon is $360{}^\circ .$ and one given angle is $30{}^\circ .$
The polygon has the total number of sides is $\dfrac{360{}^\circ }{30{}^\circ }=12.$
Hence, the given polygon has total $12$ sides.
Additional Information:
A closed-figure which is made up of the line segments and without any cures in the two dimensional plane is called a polygon. Polygon is made up of two words that are ‘poly’ and ‘gon’ which means many and sides respectively. For making a closed figure. We need at least three lines segments which connect from end to end. Therefore a polygon with at least three sides is called a Triangle.
There are some polygons which are made up of many numbers of lines. Which is as follows:
Triangle, Quadrilateral, Pentagon, Octagon, Hexagon, There are total $4$ types of polygon:
(1) Regular polygon has all interior angles and sides equal. E.g. square rhombus. Etc.
(2) Irregular polygon has all interior angles and sides different. E.g. rectangle, scalene triangle, etc.
(3) Convex polygon- has less than $180{}^\circ $ all interior angles.
(4) Concave polygon- has more than $180{}^\circ $ one or more than one interior angle.
Note: The angles of polygon are divided into two parts i.e.
(1) Interior angle
(2) Exterior angle
The sum of an interior angle of a polygon with four sides has $360{}^\circ .$
A polygon having exterior angles is the $360{}^\circ $ sum of all the exterior angles.
For regular polygons the measures of exterior angles are equal.
Hence the sum of all exterior angles for a polygon is $360{}^\circ .$
As we know that the sum of all exterior angles of polygon is $360{}^\circ .$
But for regular polygons all sides of the polygon are equal.
That’s why there is only one measure of angle given in the question.
So, we have to only divide the sum of all exterior angles by the given angle for getting the number of sides of a given polygon.
Complete step by step solution:
We know that, the sum of all exterior angle of any regular polygon is always $360{}^\circ .$ Whether that quadrilateral polygon has $3$ sides or $16$ sides, its sum will always be $360{}^\circ .$
Given that, there is a regular polygon has measure of a angle is $30{}^\circ .$
So, for a regular polygon all exterior angles are equal and are of $30{}^\circ .$
As, the sum of all angles of regular polygon is $360{}^\circ .$ and one given angle is $30{}^\circ .$
The polygon has the total number of sides is $\dfrac{360{}^\circ }{30{}^\circ }=12.$
Hence, the given polygon has total $12$ sides.
Additional Information:
A closed-figure which is made up of the line segments and without any cures in the two dimensional plane is called a polygon. Polygon is made up of two words that are ‘poly’ and ‘gon’ which means many and sides respectively. For making a closed figure. We need at least three lines segments which connect from end to end. Therefore a polygon with at least three sides is called a Triangle.
There are some polygons which are made up of many numbers of lines. Which is as follows:
Triangle, Quadrilateral, Pentagon, Octagon, Hexagon, There are total $4$ types of polygon:
(1) Regular polygon has all interior angles and sides equal. E.g. square rhombus. Etc.
(2) Irregular polygon has all interior angles and sides different. E.g. rectangle, scalene triangle, etc.
(3) Convex polygon- has less than $180{}^\circ $ all interior angles.
(4) Concave polygon- has more than $180{}^\circ $ one or more than one interior angle.
Note: The angles of polygon are divided into two parts i.e.
(1) Interior angle
(2) Exterior angle
The sum of an interior angle of a polygon with four sides has $360{}^\circ .$
A polygon having exterior angles is the $360{}^\circ $ sum of all the exterior angles.
For regular polygons the measures of exterior angles are equal.
Hence the sum of all exterior angles for a polygon is $360{}^\circ .$
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE