Answer
Verified
497.7k+ views
Hint: Here we can use Euler’s formula. The number of faces, the number of vertices and the number of edges of a polyhedron are related by the following formula:
Number of faces + number of vertices = number of edges + 2.
Complete step-by-step answer:
In this problem we have to find out how many edges are there in a cuboid. So, let us first draw a cuboid. We know that a cuboid is a solid figure which has six rectangular faces at right angles to each other.
First we have to know about the vertex, edge and face of a solid figure.
A vertex is a point where two or more line segments meet. Basically a vertex is a corner. Plural of vertex is vertices. So, in this picture the vertices are $A,B,C,D,E,F,G,H$ . So there are 8 vertices in a cuboid.
A face is a single flat surface of a solid object. Like here in this figure the faces are:$ABCD,EFGH,ABFE,DCGH,ADHE,BCGF$
So, there are 6 faces in a cuboid.
An edge is a line segment between two faces. For example here the line segment between the faces $ABCD$ and $DCGH$ is $DC$ .
Now, we know the Euler’s formula:
Number of faces + number of vertices = number of edges + 2
Let us denote the number of faces by $F$.
Number of vertices by $V$.
Number of edges by $E$.
Therefore, $F+V=E+2...........(1)$
Here, the number of faces are 6. Numbers of vertices are 8. Let us put these values in (1).
$\begin{align}
& 6+8=E+2 \\
& \Rightarrow 14=E+2 \\
& \Rightarrow E=14-2 \\
& \Rightarrow E=12 \\
\end{align}$
Therefore the numbers of edges are 12.
Hence option (e) is correct.
Note: We can count the edges from the picture also. Like the edges are $AB, BC, CD, DA, EF, FG, GH, HE, AE, DH, BF, CG$. So there are 12 edges.
Number of faces + number of vertices = number of edges + 2.
Complete step-by-step answer:
In this problem we have to find out how many edges are there in a cuboid. So, let us first draw a cuboid. We know that a cuboid is a solid figure which has six rectangular faces at right angles to each other.
First we have to know about the vertex, edge and face of a solid figure.
A vertex is a point where two or more line segments meet. Basically a vertex is a corner. Plural of vertex is vertices. So, in this picture the vertices are $A,B,C,D,E,F,G,H$ . So there are 8 vertices in a cuboid.
A face is a single flat surface of a solid object. Like here in this figure the faces are:$ABCD,EFGH,ABFE,DCGH,ADHE,BCGF$
So, there are 6 faces in a cuboid.
An edge is a line segment between two faces. For example here the line segment between the faces $ABCD$ and $DCGH$ is $DC$ .
Now, we know the Euler’s formula:
Number of faces + number of vertices = number of edges + 2
Let us denote the number of faces by $F$.
Number of vertices by $V$.
Number of edges by $E$.
Therefore, $F+V=E+2...........(1)$
Here, the number of faces are 6. Numbers of vertices are 8. Let us put these values in (1).
$\begin{align}
& 6+8=E+2 \\
& \Rightarrow 14=E+2 \\
& \Rightarrow E=14-2 \\
& \Rightarrow E=12 \\
\end{align}$
Therefore the numbers of edges are 12.
Hence option (e) is correct.
Note: We can count the edges from the picture also. Like the edges are $AB, BC, CD, DA, EF, FG, GH, HE, AE, DH, BF, CG$. So there are 12 edges.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE