
Eliminate x, y, z from the equations\[yz={{a}^{2}},zx={{b}^{2}},xy={{c}^{2}},{{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{d}^{2}}\].
Answer
620.4k+ views
Hint:
Make the LHS of the first 3 equations the same. Then find the individual values of x, y and z. Substitute the values in the 4th equation, simplify the equation and you will get the answer without variables x, y and z.
Complete step-by-step answer:
We are given 4 equations,
\[\begin{align}
& yz={{a}^{2}}-(1) \\
& zx={{b}^{2}}-(2) \\
& xy={{c}^{2}}-(3) \\
& {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{d}^{2}}-(4) \\
\end{align}\]
The following 4 expressions are algebraic expressions built up from integers, constants, variables and the algebraic expression (addition, subtraction, multiplication, division and exponentiation by an exponent that is a rational number).
Multiply ‘x’ on the LHS and RHS of equation (1).
Multiply ‘y’ on the LHS and RHS of equation (2).
Multiply ‘z’ on the LHS and RHS of equation (3).
\[\therefore \]Equation (1) becomes, \[xyz=x{{a}^{2}}\].
Equation (2) becomes, \[xyz=y{{b}^{2}}\].
Equation (3) becomes, \[xyz=z{{c}^{2}}\].
The LHS of all the above expressions are the same.
\[\therefore x{{a}^{2}}=y{{b}^{2}}=z{{c}^{2}}-(4)\]
Now we can put\[{{a}^{2}}x={{b}^{2}}y={{c}^{2}}z=k\], where k is a constant.
\[\begin{align}
& \therefore {{a}^{2}}x=k,{{b}^{2}}y=k,{{c}^{2}}z=k \\
& \therefore x=\dfrac{k}{{{a}^{2}}} \\
\end{align}\]
Similarly, \[y=\dfrac{k}{{{b}^{2}}}\]and \[z=\dfrac{k}{{{c}^{2}}}-(5)\]
So we find the values of x, y and z. Now substitute these values in equation (4).
\[\begin{align}
& {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{d}^{2}} \\
& {{\left( \dfrac{k}{{{a}^{2}}} \right)}^{2}}+{{\left( \dfrac{k}{{{b}^{2}}} \right)}^{2}}+{{\left( \dfrac{k}{{{c}^{2}}} \right)}^{2}}={{d}^{2}} \\
& \Rightarrow \dfrac{{{k}^{2}}}{{{a}^{4}}}+\dfrac{{{k}^{2}}}{{{b}^{4}}}+\dfrac{{{k}^{2}}}{{{c}^{4}}}={{d}^{2}} \\
\end{align}\]
Take \[{{k}^{2}}\]common from LHS and simplify the LHS.
\[\begin{align}
& {{k}^{2}}\left[ \dfrac{{{b}^{4}}{{c}^{4}}+{{a}^{4}}{{c}^{4}}+{{a}^{4}}{{b}^{4}}}{{{a}^{4}}{{b}^{4}}{{c}^{4}}} \right]={{d}^{2}} \\
& \therefore {{k}^{2}}\left[ {{a}^{4}}{{b}^{4}}+{{b}^{4}}{{c}^{4}}+{{a}^{4}}{{c}^{4}} \right]={{d}^{2}}{{a}^{4}}{{b}^{4}}{{c}^{4}} \\
& \therefore {{k}^{2}}=\dfrac{{{d}^{2}}{{a}^{4}}{{b}^{4}}{{c}^{4}}}{{{a}^{4}}{{b}^{4}}+{{b}^{4}}{{c}^{4}}+{{a}^{4}}{{c}^{4}}} \\
\end{align}\]
Taking square root on both sides.
\[\begin{align}
& \sqrt{{{k}^{2}}}=\sqrt{\dfrac{{{d}^{2}}{{a}^{4}}{{b}^{4}}{{c}^{4}}}{{{a}^{4}}{{b}^{4}}+{{b}^{4}}{{c}^{4}}+{{a}^{4}}{{c}^{4}}}} \\
& k=\dfrac{{{d}^{2}}{{a}^{4}}{{b}^{4}}{{c}^{4}}}{\sqrt{{{a}^{4}}{{b}^{4}}+{{b}^{4}}{{c}^{4}}+{{a}^{4}}{{c}^{4}}}} \\
\end{align}\]
We know, \[y=\dfrac{k}{{{b}^{2}}}\].
\[\therefore y=\dfrac{d{{a}^{2}}{{b}^{2}}{{c}^{2}}}{{{b}^{2}}\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}}=\dfrac{d{{a}^{2}}{{c}^{2}}}{\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}}\]
Similarly, \[z=\dfrac{k}{{{c}^{2}}}\].
\[\therefore z=\dfrac{d{{a}^{2}}{{b}^{2}}{{c}^{2}}}{{{c}^{2}}\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}}=\dfrac{d{{a}^{2}}{{b}^{2}}}{\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}}\]
\[yz={{a}^{2}}\], substitute the values of y and z on this equation (1).
\[\begin{align}
& \left( \dfrac{d{{a}^{2}}{{c}^{2}}}{\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}} \right)\left( \dfrac{d{{a}^{2}}{{b}^{2}}}{\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}} \right)={{a}^{2}} \\
& \Rightarrow \dfrac{d{{a}^{4}}{{b}^{2}}{{c}^{2}}}{\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}}={{a}^{2}} \\
\end{align}\]
Cancel out \[{{a}^{2}}\]on LHS and RHS.
\[\begin{align}
& \dfrac{d{{a}^{4}}{{b}^{2}}{{c}^{2}}}{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}=1 \\
& \therefore d{{a}^{4}}{{b}^{2}}{{c}^{2}}={{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}} \\
\end{align}\]
Hence we eliminated x, y, z and got the following expressions.
Note:
After getting the value of k, formulate the values in equation (5) and find the values of y and z. By this we can eliminate the constant ‘k’ which we have assumed. Then finally substitute the values of y and z in equation (1). We will get the final expression eliminating x, y and z.
Make the LHS of the first 3 equations the same. Then find the individual values of x, y and z. Substitute the values in the 4th equation, simplify the equation and you will get the answer without variables x, y and z.
Complete step-by-step answer:
We are given 4 equations,
\[\begin{align}
& yz={{a}^{2}}-(1) \\
& zx={{b}^{2}}-(2) \\
& xy={{c}^{2}}-(3) \\
& {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{d}^{2}}-(4) \\
\end{align}\]
The following 4 expressions are algebraic expressions built up from integers, constants, variables and the algebraic expression (addition, subtraction, multiplication, division and exponentiation by an exponent that is a rational number).
Multiply ‘x’ on the LHS and RHS of equation (1).
Multiply ‘y’ on the LHS and RHS of equation (2).
Multiply ‘z’ on the LHS and RHS of equation (3).
\[\therefore \]Equation (1) becomes, \[xyz=x{{a}^{2}}\].
Equation (2) becomes, \[xyz=y{{b}^{2}}\].
Equation (3) becomes, \[xyz=z{{c}^{2}}\].
The LHS of all the above expressions are the same.
\[\therefore x{{a}^{2}}=y{{b}^{2}}=z{{c}^{2}}-(4)\]
Now we can put\[{{a}^{2}}x={{b}^{2}}y={{c}^{2}}z=k\], where k is a constant.
\[\begin{align}
& \therefore {{a}^{2}}x=k,{{b}^{2}}y=k,{{c}^{2}}z=k \\
& \therefore x=\dfrac{k}{{{a}^{2}}} \\
\end{align}\]
Similarly, \[y=\dfrac{k}{{{b}^{2}}}\]and \[z=\dfrac{k}{{{c}^{2}}}-(5)\]
So we find the values of x, y and z. Now substitute these values in equation (4).
\[\begin{align}
& {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{d}^{2}} \\
& {{\left( \dfrac{k}{{{a}^{2}}} \right)}^{2}}+{{\left( \dfrac{k}{{{b}^{2}}} \right)}^{2}}+{{\left( \dfrac{k}{{{c}^{2}}} \right)}^{2}}={{d}^{2}} \\
& \Rightarrow \dfrac{{{k}^{2}}}{{{a}^{4}}}+\dfrac{{{k}^{2}}}{{{b}^{4}}}+\dfrac{{{k}^{2}}}{{{c}^{4}}}={{d}^{2}} \\
\end{align}\]
Take \[{{k}^{2}}\]common from LHS and simplify the LHS.
\[\begin{align}
& {{k}^{2}}\left[ \dfrac{{{b}^{4}}{{c}^{4}}+{{a}^{4}}{{c}^{4}}+{{a}^{4}}{{b}^{4}}}{{{a}^{4}}{{b}^{4}}{{c}^{4}}} \right]={{d}^{2}} \\
& \therefore {{k}^{2}}\left[ {{a}^{4}}{{b}^{4}}+{{b}^{4}}{{c}^{4}}+{{a}^{4}}{{c}^{4}} \right]={{d}^{2}}{{a}^{4}}{{b}^{4}}{{c}^{4}} \\
& \therefore {{k}^{2}}=\dfrac{{{d}^{2}}{{a}^{4}}{{b}^{4}}{{c}^{4}}}{{{a}^{4}}{{b}^{4}}+{{b}^{4}}{{c}^{4}}+{{a}^{4}}{{c}^{4}}} \\
\end{align}\]
Taking square root on both sides.
\[\begin{align}
& \sqrt{{{k}^{2}}}=\sqrt{\dfrac{{{d}^{2}}{{a}^{4}}{{b}^{4}}{{c}^{4}}}{{{a}^{4}}{{b}^{4}}+{{b}^{4}}{{c}^{4}}+{{a}^{4}}{{c}^{4}}}} \\
& k=\dfrac{{{d}^{2}}{{a}^{4}}{{b}^{4}}{{c}^{4}}}{\sqrt{{{a}^{4}}{{b}^{4}}+{{b}^{4}}{{c}^{4}}+{{a}^{4}}{{c}^{4}}}} \\
\end{align}\]
We know, \[y=\dfrac{k}{{{b}^{2}}}\].
\[\therefore y=\dfrac{d{{a}^{2}}{{b}^{2}}{{c}^{2}}}{{{b}^{2}}\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}}=\dfrac{d{{a}^{2}}{{c}^{2}}}{\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}}\]
Similarly, \[z=\dfrac{k}{{{c}^{2}}}\].
\[\therefore z=\dfrac{d{{a}^{2}}{{b}^{2}}{{c}^{2}}}{{{c}^{2}}\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}}=\dfrac{d{{a}^{2}}{{b}^{2}}}{\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}}\]
\[yz={{a}^{2}}\], substitute the values of y and z on this equation (1).
\[\begin{align}
& \left( \dfrac{d{{a}^{2}}{{c}^{2}}}{\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}} \right)\left( \dfrac{d{{a}^{2}}{{b}^{2}}}{\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}} \right)={{a}^{2}} \\
& \Rightarrow \dfrac{d{{a}^{4}}{{b}^{2}}{{c}^{2}}}{\sqrt{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}}={{a}^{2}} \\
\end{align}\]
Cancel out \[{{a}^{2}}\]on LHS and RHS.
\[\begin{align}
& \dfrac{d{{a}^{4}}{{b}^{2}}{{c}^{2}}}{{{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}}}=1 \\
& \therefore d{{a}^{4}}{{b}^{2}}{{c}^{2}}={{a}^{4}}{{b}^{4}}+{{c}^{4}}{{a}^{4}}+{{b}^{4}}{{c}^{4}} \\
\end{align}\]
Hence we eliminated x, y, z and got the following expressions.
Note:
After getting the value of k, formulate the values in equation (5) and find the values of y and z. By this we can eliminate the constant ‘k’ which we have assumed. Then finally substitute the values of y and z in equation (1). We will get the final expression eliminating x, y and z.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

