![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Equations of a stationary wave and a travelling wave are $y_1 = a\;sin(kx)cos(\omega t)$ and $y_2 = a\;sin(\omega t-kx)$. The phase difference between two points $x_1 = \dfrac{\pi}{3k}$ and $x_2 =\dfrac{3\pi}{2k}$ is $\phi_1$ for the first wave and $\phi_2$ for the second wave. The ratio $\dfrac{\phi_1}{\phi_2}$ is:
A. 1
B. $\dfrac{5}{6}$
C. $\dfrac{3}{4}$
D. $\dfrac{6}{7}$
Answer
480.3k+ views
Hint: Begin by first finding the number of nodes that lie between the two points in a stationary wave. From this you can deduce the phase difference of the stationary wave by looking at which node region lies across both the points. After this determine the phase difference between the two points in the travelling wave by calculating the difference between the two positions. Then divide the two to get the final ratio.
Formula Used: For a travelling wave, phase difference between two points: $\phi = k\Delta x$, where k is the wave vector and $\Delta x$ is the difference between the position of two points.
For a stationary wave, phase difference between two points: $\phi = n\pi$, where n is the number of nodes.
Complete answer:
Let us first consider the stationary wave whose equation is given by $y_1 = a\;sin(kx)cos(\omega t)$.
Now, we know that successive nodes in a stationary wave are found at $n\pi$ phase difference.
This means that, at node points : $sin(kx) = n\pi \Rightarrow x = \dfrac{n\pi}{k}$, where n= 0,1,2, so on.
Therefore, the nodes are found at $\dfrac{\pi}{k}$, $\dfrac{2\pi}{k}$, $\dfrac{3\pi}{k}$, and so on.
Now, the two points are given as $x_1 = \dfrac{\pi}{3k}$ and $x_2 =\dfrac{3\pi}{2k}$.
We see that $x_1 = \dfrac{\pi}{3k}$<$\dfrac{\pi}{k}$, and $\dfrac{\pi}{k}$ < $x_2 = \dfrac{3\pi}{2k}$<$\dfrac{2\pi}{k}$
This means that there is only one node between the two points, given by
Now, from $kx = n\pi \Rightarrow k\left(\dfrac{\pi}{k}\right) = n\pi \Rightarrow n = 1$
The, $kx = \pi \Rightarrow x = \dfrac{\pi}{k}$
And this gives a phase difference
$\phi_1 = kx = k\left(\dfrac{\pi}{k}\right) \Rightarrow \phi_1 = \pi$ for the stationary wave.
For the travelling wave, the phase difference $\phi_2$ is given as:
$\phi_2 = k(x_2)-k(x_1) = k(x_2-x_1) = k\left(\dfrac{3\pi}{2k}-\dfrac{\pi}{3k}\right) = \dfrac{3\pi}{2} - \dfrac{\pi}{3} = \dfrac{9\pi-2\pi}{6} \Rightarrow \phi_2 = \dfrac{7\pi}{6}$
Therefore, the ratio of the two phase differences:
$\dfrac{\phi_1}{\phi_2} = \dfrac{\pi}{\left(\dfrac{7\pi}{6}\right)} = \dfrac{6\pi}{7\pi} = \dfrac{6}{7}$
Therefore, the correct answer will be D. $\dfrac{6}{7}$.
Note:
It is important to determine the number of nodes that lie between the two points on the stationary wave as this is the way to ultimately find the phase difference depending on whether the points are present in successive loops of the wave or not. Note that the two points do not have any nodes at their position since the nodes are formed at $\pi$, $2\pi$, and so on. However, $x_2$ lies at an antinodes lie at $\dfrac{\pi}{2}$, $\dfrac{3\pi}{2}$ and so on.
Formula Used: For a travelling wave, phase difference between two points: $\phi = k\Delta x$, where k is the wave vector and $\Delta x$ is the difference between the position of two points.
For a stationary wave, phase difference between two points: $\phi = n\pi$, where n is the number of nodes.
Complete answer:
Let us first consider the stationary wave whose equation is given by $y_1 = a\;sin(kx)cos(\omega t)$.
Now, we know that successive nodes in a stationary wave are found at $n\pi$ phase difference.
This means that, at node points : $sin(kx) = n\pi \Rightarrow x = \dfrac{n\pi}{k}$, where n= 0,1,2, so on.
Therefore, the nodes are found at $\dfrac{\pi}{k}$, $\dfrac{2\pi}{k}$, $\dfrac{3\pi}{k}$, and so on.
Now, the two points are given as $x_1 = \dfrac{\pi}{3k}$ and $x_2 =\dfrac{3\pi}{2k}$.
We see that $x_1 = \dfrac{\pi}{3k}$<$\dfrac{\pi}{k}$, and $\dfrac{\pi}{k}$ < $x_2 = \dfrac{3\pi}{2k}$<$\dfrac{2\pi}{k}$
This means that there is only one node between the two points, given by
Now, from $kx = n\pi \Rightarrow k\left(\dfrac{\pi}{k}\right) = n\pi \Rightarrow n = 1$
The, $kx = \pi \Rightarrow x = \dfrac{\pi}{k}$
And this gives a phase difference
$\phi_1 = kx = k\left(\dfrac{\pi}{k}\right) \Rightarrow \phi_1 = \pi$ for the stationary wave.
For the travelling wave, the phase difference $\phi_2$ is given as:
$\phi_2 = k(x_2)-k(x_1) = k(x_2-x_1) = k\left(\dfrac{3\pi}{2k}-\dfrac{\pi}{3k}\right) = \dfrac{3\pi}{2} - \dfrac{\pi}{3} = \dfrac{9\pi-2\pi}{6} \Rightarrow \phi_2 = \dfrac{7\pi}{6}$
Therefore, the ratio of the two phase differences:
$\dfrac{\phi_1}{\phi_2} = \dfrac{\pi}{\left(\dfrac{7\pi}{6}\right)} = \dfrac{6\pi}{7\pi} = \dfrac{6}{7}$
Therefore, the correct answer will be D. $\dfrac{6}{7}$.
Note:
It is important to determine the number of nodes that lie between the two points on the stationary wave as this is the way to ultimately find the phase difference depending on whether the points are present in successive loops of the wave or not. Note that the two points do not have any nodes at their position since the nodes are formed at $\pi$, $2\pi$, and so on. However, $x_2$ lies at an antinodes lie at $\dfrac{\pi}{2}$, $\dfrac{3\pi}{2}$ and so on.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the value of x if the mode of the following data class 11 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How many valence electrons does nitrogen have class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)