Answer
Verified
387.8k+ views
Hint: To calculate the relation between moment of inertia and angular momentum, we have to know about the formula of angular momentum and moment of inertia in terms of mass, velocity i.e.,
Angular momentum $L = mvr$
Angular velocity $\omega = \dfrac{v}{r}$
Complete step by step solution:
Angular momentum is the rotational equivalent of linear momentum i.e.,
Angular momentum L $ = $ radius (r) $ \times $ linear momentum (p) …..(1)
Linear momentum p is the product of mass and velocity i.e.,
$p = m \times v$ …..(2)
From equation (1) and (2)
$L = mvr$
Now dividing and multiplying by r
$L = mvr \times \dfrac{r}{r}$
$L = (m{r^2})\left( {\dfrac{v}{r}} \right)$ …..(3)
We know that angular velocity
$\omega = \dfrac{v}{r}$ …..(4)
From equation (3) & (4)
$L = (m{r^2})\omega $
Here $m{r^2}$ is known as the moment of inertia I.
So, $\boxed{L = I\omega }$
Above expression shows the relation between moment of inertia and angular momentum.
According to above formula we can say that moment of inertia I is a quantity expressing a body’s tendency to resist angular acceleration which is the sum of the products of the mass of each particle in the body with the square of its distance from the axis of rotation i.e., $\boxed{I = m{r^2}}$
Unit $ \to kg{m^2}$
Dimension $ \to [M{L^2}]$
It is a linear quantity.
Note: To establish the relation between any 2 physical quantities we must know about the definitions of them and some basic relation related to them.
Angular momentum $L = mvr$
Angular velocity $\omega = \dfrac{v}{r}$
Complete step by step solution:
Angular momentum is the rotational equivalent of linear momentum i.e.,
Angular momentum L $ = $ radius (r) $ \times $ linear momentum (p) …..(1)
Linear momentum p is the product of mass and velocity i.e.,
$p = m \times v$ …..(2)
From equation (1) and (2)
$L = mvr$
Now dividing and multiplying by r
$L = mvr \times \dfrac{r}{r}$
$L = (m{r^2})\left( {\dfrac{v}{r}} \right)$ …..(3)
We know that angular velocity
$\omega = \dfrac{v}{r}$ …..(4)
From equation (3) & (4)
$L = (m{r^2})\omega $
Here $m{r^2}$ is known as the moment of inertia I.
So, $\boxed{L = I\omega }$
Above expression shows the relation between moment of inertia and angular momentum.
According to above formula we can say that moment of inertia I is a quantity expressing a body’s tendency to resist angular acceleration which is the sum of the products of the mass of each particle in the body with the square of its distance from the axis of rotation i.e., $\boxed{I = m{r^2}}$
Unit $ \to kg{m^2}$
Dimension $ \to [M{L^2}]$
It is a linear quantity.
Note: To establish the relation between any 2 physical quantities we must know about the definitions of them and some basic relation related to them.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE