Answer
Verified
398.4k+ views
Hint: The given question requires us to integrate a trigonometric function of $t$ with respect to $t$. Integration gives us a family of curves. Integrals in maths are used to find many useful quantities such as areas, volumes, displacement, etc. integral is always found with respect to some variables, which in this case is $x$.
Complete step by step solution:
The given question requires us to integrate a trigonometric function ${\tan ^4}t{\sec ^2}t$ in variable t.
Now, the integral given to us is complex and cannot be solved directly using basic results of integration of functions. We will have to simplify the function so as to solve the integral.
So, we can assign a new variable in the integral.
Let us assume $\tan t = x$.
Then, differentiating both sides of the equation, we get,
$ \Rightarrow {\sec ^2}tdt = dx$
Hence, the integral given is,
$2\int {{{\tan }^4}t{{\sec }^2}tdt} $
Substituting the value of ${\sec ^2}tdt$ in terms of x as ${\sec ^2}tdt = dx$ and the value of $\tan t$ as x, we get,
$ \Rightarrow 2\int {{x^4}dx} $
Now, we know that the integral of ${x^n}$ with respect to x is $\dfrac{{{x^{n + 1}}}}{{n + 1}}$ using the power rule of integration. So, we get,
$ \Rightarrow 2\left( {\dfrac{{{x^5}}}{5}} \right) + c$, where c is an arbitrary constant.
Substituting the value of x in the expression as $\tan t$, we get,
$ \Rightarrow 2\left( {\dfrac{{{{\tan }^5}t}}{5}} \right) + c$
Opening the bracket, we get,
$ \Rightarrow \dfrac{{2{{\tan }^5}t}}{5} + c$
So, $\dfrac{{2{{\tan }^5}t}}{5} + c$, where c is any arbitrary constant, is the value of the given integral, $2\int {{{\tan }^4}t{{\sec }^2}tdt} $.
Note:
The indefinite integrals of certain functions may have more than one answer in different forms. However, all these forms are correct and interchangeable into one another. Indefinite integral gives us the family of curves as we don’t know the exact value of the constant.
Complete step by step solution:
The given question requires us to integrate a trigonometric function ${\tan ^4}t{\sec ^2}t$ in variable t.
Now, the integral given to us is complex and cannot be solved directly using basic results of integration of functions. We will have to simplify the function so as to solve the integral.
So, we can assign a new variable in the integral.
Let us assume $\tan t = x$.
Then, differentiating both sides of the equation, we get,
$ \Rightarrow {\sec ^2}tdt = dx$
Hence, the integral given is,
$2\int {{{\tan }^4}t{{\sec }^2}tdt} $
Substituting the value of ${\sec ^2}tdt$ in terms of x as ${\sec ^2}tdt = dx$ and the value of $\tan t$ as x, we get,
$ \Rightarrow 2\int {{x^4}dx} $
Now, we know that the integral of ${x^n}$ with respect to x is $\dfrac{{{x^{n + 1}}}}{{n + 1}}$ using the power rule of integration. So, we get,
$ \Rightarrow 2\left( {\dfrac{{{x^5}}}{5}} \right) + c$, where c is an arbitrary constant.
Substituting the value of x in the expression as $\tan t$, we get,
$ \Rightarrow 2\left( {\dfrac{{{{\tan }^5}t}}{5}} \right) + c$
Opening the bracket, we get,
$ \Rightarrow \dfrac{{2{{\tan }^5}t}}{5} + c$
So, $\dfrac{{2{{\tan }^5}t}}{5} + c$, where c is any arbitrary constant, is the value of the given integral, $2\int {{{\tan }^4}t{{\sec }^2}tdt} $.
Note:
The indefinite integrals of certain functions may have more than one answer in different forms. However, all these forms are correct and interchangeable into one another. Indefinite integral gives us the family of curves as we don’t know the exact value of the constant.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE