Answer
Verified
430.5k+ views
Hint: The arcsin(x) is a mathematical function which is equal to the inverse of sine function. Suppose we have a function $y=f(x)$. Then the inverse of the function $f(x)$ is a function in which for a value of y we have a value of x.
Complete step by step solution:
Let us first understand what is meant by arcsin(x).The arcsin(x) is a mathematical function which is equal to the inverse of sine function.i.e. $\arcsin (x)={{\sin }^{-1}}(x)$. Suppose we have a function $y=f(x)$. Then the inverse of the function $f(x)$ is a function in which for a value of y we have a value of x. In other words, the inverse of a function is $x={{f}^{-1}}(y)$.
Therefore, if we have a function $y={{f}^{-1}}(x)$, then we can write that $f(y)=x$.
In the given case, $y={{f}^{-1}}(x)={{\sin }^{-1}}(x)$.
Then, this means that $\sin (y)=x$.
Since we have to calculate the value of $\arcsin \left( \dfrac{4}{5} \right)$, the value of x is $\dfrac{4}{5}$.
This means that $\sin (y)=\dfrac{4}{5}$.
Therefore, we have to find that angle for which sine of that angle is equal to $\dfrac{4}{5}$.
And we know that $\sin {{53}^{\circ }}=\dfrac{4}{5}$.
This means that $y={{53}^{\circ }}$.
But, we know that $y={{\sin }^{-1}}(x)$
${{\sin }^{-1}}(x)=\arcsin (x)$.
$\Rightarrow y=\arcsin \left( \dfrac{4}{5} \right)\\
\therefore y={{53}^{\circ }}$
Note:If you do not know that $\sin {{53}^{\circ }}=\dfrac{4}{5}$, then you can calculate it by using trigonometry if you know $\tan {{53}^{\circ }}=\dfrac{4}{3}$. We know that tangent of an angle (say x) is given to be equal to the ratio of the opposite side to that angle to the adjacent side to that angle of the right angled triangle of whose angle is.
i.e. $\tan x=\dfrac{\text{Opposite}}{\text{Adjacent}}$. In this case, $x={{53}^{\circ }}$ and we know that $\tan {{53}^{\circ }}=\dfrac{4}{3}$
Therefore,
$\tan {{53}^{\circ }}=\dfrac{\text{Opposite}}{\text{Adjacent}}=\dfrac{4}{3}$
Now, draw a right angled triangle, whose one angle is of $x={{53}^{\circ }}$ , with the opposite side to this angle of length 4 units and the adjacent side of length 3 units.
Then by Pythagoras theorem we know that ${{\text{(hypotenuse)}}^{2}}={{3}^{2}}+{{4}^{2}}=25$
Therefore, $\text{hypotenuse}=5$
Now, we can use the relation that $\sin x=\sin {{53}^{\circ }}=\dfrac{\text{Opposite}}{\text{Hypotenuse}}$.
Then this means that $\sin {{53}^{\circ }}=\dfrac{4}{5}$
Complete step by step solution:
Let us first understand what is meant by arcsin(x).The arcsin(x) is a mathematical function which is equal to the inverse of sine function.i.e. $\arcsin (x)={{\sin }^{-1}}(x)$. Suppose we have a function $y=f(x)$. Then the inverse of the function $f(x)$ is a function in which for a value of y we have a value of x. In other words, the inverse of a function is $x={{f}^{-1}}(y)$.
Therefore, if we have a function $y={{f}^{-1}}(x)$, then we can write that $f(y)=x$.
In the given case, $y={{f}^{-1}}(x)={{\sin }^{-1}}(x)$.
Then, this means that $\sin (y)=x$.
Since we have to calculate the value of $\arcsin \left( \dfrac{4}{5} \right)$, the value of x is $\dfrac{4}{5}$.
This means that $\sin (y)=\dfrac{4}{5}$.
Therefore, we have to find that angle for which sine of that angle is equal to $\dfrac{4}{5}$.
And we know that $\sin {{53}^{\circ }}=\dfrac{4}{5}$.
This means that $y={{53}^{\circ }}$.
But, we know that $y={{\sin }^{-1}}(x)$
${{\sin }^{-1}}(x)=\arcsin (x)$.
$\Rightarrow y=\arcsin \left( \dfrac{4}{5} \right)\\
\therefore y={{53}^{\circ }}$
Note:If you do not know that $\sin {{53}^{\circ }}=\dfrac{4}{5}$, then you can calculate it by using trigonometry if you know $\tan {{53}^{\circ }}=\dfrac{4}{3}$. We know that tangent of an angle (say x) is given to be equal to the ratio of the opposite side to that angle to the adjacent side to that angle of the right angled triangle of whose angle is.
i.e. $\tan x=\dfrac{\text{Opposite}}{\text{Adjacent}}$. In this case, $x={{53}^{\circ }}$ and we know that $\tan {{53}^{\circ }}=\dfrac{4}{3}$
Therefore,
$\tan {{53}^{\circ }}=\dfrac{\text{Opposite}}{\text{Adjacent}}=\dfrac{4}{3}$
Now, draw a right angled triangle, whose one angle is of $x={{53}^{\circ }}$ , with the opposite side to this angle of length 4 units and the adjacent side of length 3 units.
Then by Pythagoras theorem we know that ${{\text{(hypotenuse)}}^{2}}={{3}^{2}}+{{4}^{2}}=25$
Therefore, $\text{hypotenuse}=5$
Now, we can use the relation that $\sin x=\sin {{53}^{\circ }}=\dfrac{\text{Opposite}}{\text{Hypotenuse}}$.
Then this means that $\sin {{53}^{\circ }}=\dfrac{4}{5}$
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE