Answer
Verified
431.7k+ views
Hint: In order to find the solution of a trigonometric equation, we start by taking the inverse trigonometric function like inverse sin, inverse cosine, inverse tangent on both sides of the equation and then set up reference angles to find the rest of the answers.
For ${\sin ^{ - 1}}$ function, the principal value branch is $\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]$.
For ${\cos ^{ - 1}}$ function, the principal value branch is $\left[ {0,\pi } \right]$.
For ${\tan ^{ - 1}}$ function, the principal value branch is $\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$.
Complete step by step solution:
According to definition of inverse ratio,
If$\cos x = - \dfrac{{\sqrt 3 }}{2}$,
Then, ${\cos ^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right) = x$ where the value of x lies in the range $\left[ {0,\pi } \right]$.
Now, we know that the cosine function is positive in the first and fourth quadrants and negative in the second and third quadrant.
So, the angle $x = {\cos ^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right)$ must lie either in second quadrant or in third quadrant.
We know that the value of $\cos \left( {\dfrac{\pi }{6}} \right)$ is $\left( {\dfrac{{\sqrt 3 }}{2}} \right)$. Also, $\cos \left( {\pi - \theta } \right) = - \cos \left( \theta \right)$.
So, $\cos \left( {\pi - \dfrac{\pi }{6}} \right) = - \cos \left( {\dfrac{\pi }{6}} \right)$ .
Therefore, \[\cos \left( {\dfrac{{5\pi }}{6}} \right) = \left( { - \dfrac{{\sqrt 3 }}{2}} \right)\].
Hence, the value of ${\cos ^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right)$ is $\left( {\dfrac{{5\pi }}{6}} \right)$.
Note:The basic inverse trigonometric functions are used to find the missing angles in right triangles. While the regular trigonometric functions are used to determine the missing sides of the right-angled triangles, using the following formulae:
\[\sin \theta = \left( {\dfrac{{{\text{Opposite Side}}}}{{{\text{Hypotenuse}}}}} \right)\]
\[\cos \theta = \left( {\dfrac{{{\text{Adjacent Side}}}}{{{\text{Hypotenuse}}}}} \right)\]
\[\tan \theta = \left( {\dfrac{{{\text{Opposite Side}}}}{{{\text{Adjacent Side}}}}} \right)\]
Besides the trigonometric functions and inverse trigonometric functions, we also have some rules related to trigonometry such as the sine rule and cosine rule. According to the sine rule, the ratio of the sine of two angles is equal to the ratio of the lengths of the sides of the triangle opposite to both the angles. So, $\left( {\dfrac{{\sin A}}{{\sin B}}} \right) = \left( {\dfrac{a}{b}} \right)$.
For ${\sin ^{ - 1}}$ function, the principal value branch is $\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]$.
For ${\cos ^{ - 1}}$ function, the principal value branch is $\left[ {0,\pi } \right]$.
For ${\tan ^{ - 1}}$ function, the principal value branch is $\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$.
Complete step by step solution:
According to definition of inverse ratio,
If$\cos x = - \dfrac{{\sqrt 3 }}{2}$,
Then, ${\cos ^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right) = x$ where the value of x lies in the range $\left[ {0,\pi } \right]$.
Now, we know that the cosine function is positive in the first and fourth quadrants and negative in the second and third quadrant.
So, the angle $x = {\cos ^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right)$ must lie either in second quadrant or in third quadrant.
We know that the value of $\cos \left( {\dfrac{\pi }{6}} \right)$ is $\left( {\dfrac{{\sqrt 3 }}{2}} \right)$. Also, $\cos \left( {\pi - \theta } \right) = - \cos \left( \theta \right)$.
So, $\cos \left( {\pi - \dfrac{\pi }{6}} \right) = - \cos \left( {\dfrac{\pi }{6}} \right)$ .
Therefore, \[\cos \left( {\dfrac{{5\pi }}{6}} \right) = \left( { - \dfrac{{\sqrt 3 }}{2}} \right)\].
Hence, the value of ${\cos ^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{2}} \right)$ is $\left( {\dfrac{{5\pi }}{6}} \right)$.
Note:The basic inverse trigonometric functions are used to find the missing angles in right triangles. While the regular trigonometric functions are used to determine the missing sides of the right-angled triangles, using the following formulae:
\[\sin \theta = \left( {\dfrac{{{\text{Opposite Side}}}}{{{\text{Hypotenuse}}}}} \right)\]
\[\cos \theta = \left( {\dfrac{{{\text{Adjacent Side}}}}{{{\text{Hypotenuse}}}}} \right)\]
\[\tan \theta = \left( {\dfrac{{{\text{Opposite Side}}}}{{{\text{Adjacent Side}}}}} \right)\]
Besides the trigonometric functions and inverse trigonometric functions, we also have some rules related to trigonometry such as the sine rule and cosine rule. According to the sine rule, the ratio of the sine of two angles is equal to the ratio of the lengths of the sides of the triangle opposite to both the angles. So, $\left( {\dfrac{{\sin A}}{{\sin B}}} \right) = \left( {\dfrac{a}{b}} \right)$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE