Answer
Verified
429.9k+ views
Hint: We first break the functions in the numerator of $\int{\dfrac{1+x}{1+{{x}^{2}}}dx}$. We take the $\dfrac{dy}{dx}$ altogether. We integrate the functions separately. Then we take the addition to complete the problem. We also use the integral formula of $\int{\dfrac{dx}{1+{{x}^{2}}}}={{\tan }^{-1}}x+c,\int{\dfrac{dx}{x}}=\log \left| x \right|+c$.
Complete step-by-step solution:
We first break the integral function as $\int{\dfrac{1+x}{1+{{x}^{2}}}dx}=\int{\dfrac{1}{1+{{x}^{2}}}dx}+\int{\dfrac{x}{1+{{x}^{2}}}dx}$.
We integrate these two functions and take the addition to get the final solution.
We use the integral formula of $\int{\dfrac{dx}{1+{{x}^{2}}}}={{\tan }^{-1}}x$.
For the second part $\int{\dfrac{x}{1+{{x}^{2}}}dx}$, we are going to change the base of the integral where we assume the new variable of $z=1+{{x}^{2}}$.
We take the new base and differentiate the equation $z={{x}^{2}}+1$.
We know that the differentiated form of ${{x}^{2}}$ is $2x$ as $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$.
Differentiating both sides with respect to $x$, we get
\[\begin{align}
& \dfrac{d}{dx}\left( z \right)=\dfrac{d}{dx}\left( {{x}^{2}}+1 \right) \\
& \Rightarrow \dfrac{dz}{dx}=2x \\
\end{align}\]
Now we convert the differentiation into differential form where \[\dfrac{dz}{2}=xdx\].
Now we try to reform the main function of the integration where $\int{\dfrac{x}{1+{{x}^{2}}}dx}$.
We now replace all those values with \[\dfrac{dz}{2}=xdx\] and $z={{x}^{2}}+1$ in the $\int{\dfrac{x}{1+{{x}^{2}}}dx}$.
We simplify the integral equation by the formula $\int{\dfrac{dx}{x}}=\log \left| x \right|+c$.
$\int{\dfrac{x}{1+{{x}^{2}}}dx}=\int{\dfrac{dz}{2z}}=\dfrac{1}{2}\int{\dfrac{dz}{z}}=\dfrac{1}{2}\log \left| z \right|$
We put the values where $z={{x}^{2}}+1$. We got $\int{\dfrac{x}{1+{{x}^{2}}}dx}=\dfrac{1}{2}\log \left| 1+{{x}^{2}} \right|$.
We take the integral constant of $c$ as the final one. So, $\int{\dfrac{1+x}{1+{{x}^{2}}}dx}={{\tan }^{-1}}x+\dfrac{1}{2}\log \left| 1+{{x}^{2}} \right|+c$
The final integral of $\int{\dfrac{1+x}{1+{{x}^{2}}}dx}$ is ${{\tan }^{-1}}x+\dfrac{1}{2}\log \left| 1+{{x}^{2}} \right|+c$.
Note: We can also solve those integrations using the base change for ratio $z={{x}^{2}}$. In that case the sum gets complicated but the final solution would be the same. It is better to watch out for the odd power value in the ratios and take that as the change in the variable.
Complete step-by-step solution:
We first break the integral function as $\int{\dfrac{1+x}{1+{{x}^{2}}}dx}=\int{\dfrac{1}{1+{{x}^{2}}}dx}+\int{\dfrac{x}{1+{{x}^{2}}}dx}$.
We integrate these two functions and take the addition to get the final solution.
We use the integral formula of $\int{\dfrac{dx}{1+{{x}^{2}}}}={{\tan }^{-1}}x$.
For the second part $\int{\dfrac{x}{1+{{x}^{2}}}dx}$, we are going to change the base of the integral where we assume the new variable of $z=1+{{x}^{2}}$.
We take the new base and differentiate the equation $z={{x}^{2}}+1$.
We know that the differentiated form of ${{x}^{2}}$ is $2x$ as $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$.
Differentiating both sides with respect to $x$, we get
\[\begin{align}
& \dfrac{d}{dx}\left( z \right)=\dfrac{d}{dx}\left( {{x}^{2}}+1 \right) \\
& \Rightarrow \dfrac{dz}{dx}=2x \\
\end{align}\]
Now we convert the differentiation into differential form where \[\dfrac{dz}{2}=xdx\].
Now we try to reform the main function of the integration where $\int{\dfrac{x}{1+{{x}^{2}}}dx}$.
We now replace all those values with \[\dfrac{dz}{2}=xdx\] and $z={{x}^{2}}+1$ in the $\int{\dfrac{x}{1+{{x}^{2}}}dx}$.
We simplify the integral equation by the formula $\int{\dfrac{dx}{x}}=\log \left| x \right|+c$.
$\int{\dfrac{x}{1+{{x}^{2}}}dx}=\int{\dfrac{dz}{2z}}=\dfrac{1}{2}\int{\dfrac{dz}{z}}=\dfrac{1}{2}\log \left| z \right|$
We put the values where $z={{x}^{2}}+1$. We got $\int{\dfrac{x}{1+{{x}^{2}}}dx}=\dfrac{1}{2}\log \left| 1+{{x}^{2}} \right|$.
We take the integral constant of $c$ as the final one. So, $\int{\dfrac{1+x}{1+{{x}^{2}}}dx}={{\tan }^{-1}}x+\dfrac{1}{2}\log \left| 1+{{x}^{2}} \right|+c$
The final integral of $\int{\dfrac{1+x}{1+{{x}^{2}}}dx}$ is ${{\tan }^{-1}}x+\dfrac{1}{2}\log \left| 1+{{x}^{2}} \right|+c$.
Note: We can also solve those integrations using the base change for ratio $z={{x}^{2}}$. In that case the sum gets complicated but the final solution would be the same. It is better to watch out for the odd power value in the ratios and take that as the change in the variable.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE