
How do you evaluate integral \[\int{\dfrac{{{e}^{\dfrac{1}{x}}}}{{{x}^{2}}}}\]
Answer
453.3k+ views
Hint: To solve this question, we will need some of the integrations and differentiation of functions. We should know the integration of \[\int{{{e}^{t}}dt}={{e}^{t}}\]. Also, we should know the derivative of \[\dfrac{1}{x}\] with respect to x is \[\dfrac{-1}{{{x}^{2}}}\]. We will use the substitution method to solve this integral.
Complete step by step solution:
Let, \[\dfrac{1}{x}=t\]. As we know that the derivative of \[\dfrac{1}{x}\] with respect to x is \[\dfrac{-1}{{{x}^{2}}}\]. Differentiating both sides of the expression \[\dfrac{1}{x}=t\], we get \[\dfrac{-1}{{{x}^{2}}}dx=dt\]. Multiplying both sides by \[-1\], we get
\[\Rightarrow \dfrac{1}{{{x}^{2}}}dx=-dt\]
We are asked to evaluate the integral \[\int{\dfrac{{{e}^{\dfrac{1}{x}}}}{{{x}^{2}}}}dx\].
Using the above substitutions, we can replace \[\dfrac{1}{x}=t\] and \[\dfrac{1}{{{x}^{2}}}dx=-dt\]. By doing this we get \[\int{-{{e}^{t}}dt}\]. So, we need to evaluate this integral now,
As \[-1\] is a constant, it can be taken out of the integral sign. By doing this we get \[-\int{{{e}^{t}}dt}\]. We know that the integration \[\int{{{e}^{t}}dt}={{e}^{t}}\]. Using this, we can evaluate the above integration as
\[\begin{align}
& \Rightarrow -\int{{{e}^{t}}dt}=-1\times {{e}^{t}}+C \\
& \Rightarrow -{{e}^{t}}+C \\
\end{align}\]
Here, C is the constant of integration. Replacing the t with \[\dfrac{1}{x}\], we get \[-{{e}^{\dfrac{1}{x}}}\]. Thus, the integration of \[\int{\dfrac{{{e}^{\dfrac{1}{x}}}}{{{x}^{2}}}}dx\] is \[-{{e}^{\dfrac{1}{x}}}+C\].
Note:
To solve these types of questions, one should remember the integrations and differentiation of functions. Here we used the substitution method because we could find a function and its derivative given in the expression. For indefinite integrations, it is very important to write the constant of integration in the final answer, otherwise the answer becomes incorrect.
Complete step by step solution:
Let, \[\dfrac{1}{x}=t\]. As we know that the derivative of \[\dfrac{1}{x}\] with respect to x is \[\dfrac{-1}{{{x}^{2}}}\]. Differentiating both sides of the expression \[\dfrac{1}{x}=t\], we get \[\dfrac{-1}{{{x}^{2}}}dx=dt\]. Multiplying both sides by \[-1\], we get
\[\Rightarrow \dfrac{1}{{{x}^{2}}}dx=-dt\]
We are asked to evaluate the integral \[\int{\dfrac{{{e}^{\dfrac{1}{x}}}}{{{x}^{2}}}}dx\].
Using the above substitutions, we can replace \[\dfrac{1}{x}=t\] and \[\dfrac{1}{{{x}^{2}}}dx=-dt\]. By doing this we get \[\int{-{{e}^{t}}dt}\]. So, we need to evaluate this integral now,
As \[-1\] is a constant, it can be taken out of the integral sign. By doing this we get \[-\int{{{e}^{t}}dt}\]. We know that the integration \[\int{{{e}^{t}}dt}={{e}^{t}}\]. Using this, we can evaluate the above integration as
\[\begin{align}
& \Rightarrow -\int{{{e}^{t}}dt}=-1\times {{e}^{t}}+C \\
& \Rightarrow -{{e}^{t}}+C \\
\end{align}\]
Here, C is the constant of integration. Replacing the t with \[\dfrac{1}{x}\], we get \[-{{e}^{\dfrac{1}{x}}}\]. Thus, the integration of \[\int{\dfrac{{{e}^{\dfrac{1}{x}}}}{{{x}^{2}}}}dx\] is \[-{{e}^{\dfrac{1}{x}}}+C\].
Note:
To solve these types of questions, one should remember the integrations and differentiation of functions. Here we used the substitution method because we could find a function and its derivative given in the expression. For indefinite integrations, it is very important to write the constant of integration in the final answer, otherwise the answer becomes incorrect.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the modal class for the following table given class 11 maths CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
